أثر تنمية مهارات الاتصال الرياضي في القدرة على حل المسألة الرياضية لدى طلبة الصف الثامن الأساسي

د. خميس موسى نجم
كلية العلوم التربوية، جامعة آل البيت
โอه- الاردن

الملخص

هدفت هذه الدراسة إلى الكشف عن أثر تنمية مهارات الاتصال الرياضي في القدرة على حل المسألة الرياضية لدى طلبة الصف الثامن الأساسي. تكمن عينية الدراسة من (120) طالباً من طلبة الصف الثامن الأساسي موزعين على شميتين. حيث تم اختيار إحداها عشوائياً لتكون المجموعة التجريبية تدرس الرياضيات من خلال تنمية مهارات الاتصال الرياضي، والأخرى المجموعة الضابطة تدرس بالطريقة التقليدية. وتكونت أداة الدراسة من اختيار حل المسألة الرياضية، والإنجاح عن سؤال الدراسة واختبار فرضيتها. تم استخدام تحليل التباين الأحادي، حيث أشارت النتائج إلى الأثر الإيجابي لتنمية مهارات الاتصال الرياضي في القدرة الطلبة على حل المسألة الرياضية، وتتفقها بذلك على الطريقة التقليدية في التدريس.

الإطار النظري

تعد القدرة على حل المشكلات متطلباً أساسياً في حياة الفرد المعاصرة، فكثير من المواضيع المختلفة التي تواجه الفرد في الحياة اليومية تتطلب منه القيام بحل مشكلة ما واتخاذ القرار السليم بشأنها، ومن هنا تؤكد برامج التطوير التربوي في أي نظام تربوي متجدد، على تنمية قدرات الطلبة على حل المشكلات وصنع القرارات. بهدف تمكنهم من التعامل بنجاح مع معطيات القرن الحادي والعشرين. ومع ما يأتي به المستقبل من معرفة ومتغيرات.

وتعد القدرة على حل المشكلات الناتج الأكثر أهمية للتعلم، حيث نجدها...
تعتلي قمة هرم النتائج التعليمية عند جانبيه، كما تتمد مهارة حل المشكلات أهميتها من علاقتها بالتفكير (بدوي، 2003). ديوي أن خطوات حل المشكلات على صلة بخطوات عمليات التفكير المنتج أو الفعال، ويفترض ديوي أن التفكير هو الأداة الصالحة لمعالجة المشكلات والتفكير عليها، ويعتبر أن التفكير التحليلي هو أرقى أنواع التفكير، إذ يتطلب تحليل المشكلات والحقائق قبل الحكم عليها وعلى صحتها. كما حل ديوي التفكير من الناحية المتنقلة إلى خمس مراحل هي (غام، 1995): الشعور بالمشكلة وتحديدها، جمع المعلومات حول المشكلة، صياغة الفرض حول المشكلة، اختبار الفرض والتحقق من صحتها، والوصول إلى النتائج.

ويعود الاهتمام بتنمية قدرة الطلبة على حل المسألة الرياضية إلى...
ما يمكن أن يحقق ذلك من فوائد وإيجابيات كثيرة، فتعلم الطلبة حل المسألة الرياضية يمكنه من اتخاذ القرارات السليمة في حياتهم (أبو زينة، 2003، Igo، 2008)، والمسألة الرياضية تعطي الرياضيات قيمة وظيفية من خلال ربط الرياضيات بحياة الطلبة، والعمل على تدريهم على حل المشكلات التي تواجههم (Taylor and McDonald، 2007، Rogge، 2004).

وقد تعددت مداخل تدريس حل المسألة الرياضية وتنوعت لتشمل العديد

من الاستراتيجيات، حيث يعد مدخل بوليما Polya لتعلم حل المسألة الأساس الذي اعتمدت عليه الكثير من المداخل والتجارب التي تناولت عمليات واستراتيجيات حل المسألة. ويتناول هذا النموذج أربع مراحل رئيسية لحل المسألة: وهي: فهم المسألة، وضع واتباع خطة الحل، تنفيذ الحل، ومراجعة الحل (McGivney and DeFranco، 1995، وبيري، Enright and Beatte، 1992، Word، 2003، 1995، Problem Solving، SOLVE، Resolve the problem، Organize data، Study the problem الآلية: دراسة المسألة...
ويعتبر ضوء الاهتمام الذي تلقاه المسألة الرياضية، قام عدد من الباحثين بالعمل على تدريس ووسائل تعليمية متنوعة، فهي هذا السياق أشار جاكسون (Jackson, 2000) إلى فعالية تطبيق مهارات التفكير الناقد في تنمية قدرة الطلبة على حل المسألة الرياضية. وأشارت كل من دراسة جاكسون (Jackson, 2000) إلى شانغ وآخرين (Chang et al., 2006)، ودراسة منجس وجراسيل (Mingus and Grassl, 1997) إلى الأثر الإيجابي لاستخدام الحاسوب في تدريس الرياضيات في تنمية قدرة الطلبة على حل المسألة الرياضية. كما أشارت دراسة فكس وآخرين (Fuchs et al., 2008) إلى فعالية التعليم السور والتعليم الهدافي في تنمية القدرة على حل المسألة الرياضية لدى الطلبة الذين لديهم صعوبات تعلم الرياضيات والقراءة.

وذكرت دراسة مونتاج (Montague, 2008) إلى فعالية استراتيجية التعلم الذاتي في تنمية القدرة على حل المسألة الرياضية لدى الطلبة ببطريقة التعلم في الرياضيات، وذكرت دراسة وانج وآخرين (Hwang et al., 2008) إلى الأثر الإيجابي لاستخدام الإنترنت في تدريس الرياضيات في تنمية قدرة الطلبة على حل المسألة الرياضية.

ومن خلال قراءة ومقارنة هذه النصوص، نستطيع أن نستنتج أن استخدام التكنولوجيا والتعلم بالإنترنت يفتح الباب للتعلم الفعال والانونسي. كما أن استخدام المسائل المعقدة والمتنوعة في تعليم الرياضيات يمكن أن يساعد الطلبة على التفكير النقدي والحل النقدي للمشكلات والتحديات التي يواجهونها في حياتهم اليومية. يعتبر أيضاً التعليم المبكر في الرياضيات من أهمية كبيرة في شكله المناسب، حيث يمكن أن يساعد على تطوير مهارات التفكير النقدي والحل المشكلاتية لدى الطلبة في أدنى سن ممكن.

ومع ذلك، يجب أن نتذكر أن التعليم الصحيح لا يتعلق فقط بتعلم الرياضيات، بل يتعلق أيضًا بالتعلم النشط والتعليم المبكر في الرياضيات. يمكن للطلبة من خلال استخدام هذه الطرق، أن يطوروا مهاراتهم الخاصة بالتعلم النشط والتعلم المبكر في الرياضيات.
خلال أدائهم للأنشطة الرياضية، ولتباعد ما يكون بـ ـ أذهانهم من أفكار أراء، (Anderson & Little, 2004; Cook and Buchholz, 2005) والعمل على مساعدة الطلبة على إيجاد صلة ورابط بين لغة الرياضيات واللغة التي يتحدثون بها ويستخدمونها ـ حياتهم اليومية. ويتايت ذلك من خلال ترجمة المواقف الحياتية إلى لغة رياضية من خلال استخدام الرموز والمتغيرات، والنموذج، Modeling Variables. NCTM, 2000; Rowan and Mumme, 1990; Lewis and Long, 1993)

والاتصال في الرياضيات لا يقتصر به فقط قدرة الطالب على استخدام لغة الرياضيات للتعبير عما يجلوـ ـ ذهنه ويخلله من أفكار، بل ينبغي أيضاً قدرة الطالب على التفكير والتحليل والتبيلر، والاتصال أيضاً طريقة لمشاركة الأفكار، وتبادل الآراء والمقترحات، وذلك بين العلم والطلبة أو بين الطلبة أنفسهم، سواء أكان ذلك حول الرياضيات ذاته أم حول المواقف الحياتية التي تتناولها الأنشطة الرياضية (بدوي، 2003).

والاتصال الرياضي داخل غرفة الصف قد يأخذ صوراً مختلفة من اللغة، وقد يكون كتابة أم لفظاً (بدوي، 2003; 2000)، كما أن الاتصال الرياضي يتضمن المهارات الأتية (بدوي، 2003، عبيد، 2004): قراءة الرياضيات، والتحدث بها، كتابة الرياضيات، والاستماع إلى الرياضيات، وتمثيل الرياضيات.

وإنطلاقاً من أهمية الاتصال في عمليته تعلم وتعليم الرياضيات، فقد أشار عدد من الباحثين إلى جملة من الإجراءات التدريسية، التي يمكن للمعلم من خلالها العمل على تنمية مهارات الاتصال الرياضي لدى الطلبة. ومن هذه الإجراءات استخدام أسلوب التعلم التفاعلي (Coates, 2005)، وذلك لأهمية الدور الذي يلعبه تنمية مهارات الاتصال الرياضي لدى الطلبة، من خلال ما يتبعه من فرص أمام الطلبة لتتبادل الأفكار والاقتراحات والخبرات فيما بينهم. كما من المهم هنا استخدام أساليب متنوعة ـ طرح الأسئلة داخل غرفة
الصف، ومن تلك الأساليب استخدام الطريقة السocratية (طريقة الحوار) Socratic Questioning، وتقوم هذه الطريقة على الحوار بين المعلم والطلبة، ويكون هذا الحوار على شكل من أسئلة المناقشة (السؤال - الجواب) وتؤدي هذه الطريقة إلى إثارة التفكير وفق نزاع الفكر لدى الطلبة، وتساعدهم على اكتساب الحقائق من تلقاء أنفسهم. ويكون المعلم هنا موجهاً ومرشداً لعملية التعليم (Menon, 1996; Paul et al., 1990).

اعتبر طرح السؤال بمثابة قصة (دروة) السماء الرياضي Bemmen أن الطالب ينمو رياضياً عندما يصبح قادرًا على صياغة الفرضيات وطرح التساؤلات حول قضية أو مسألة ما، ووضع تلك المسألة في سياقات مختلفة خارج سياقها الحدود، ومن ثم محاولة الإجابة عن تلك التساؤلات والفرضيات (Greenwood, 1993).

كما هو المهم أيضاً العمل على تطوير قدرات الطلبة على الكتابة، وذلك بتناول موضوعات مختلفة ذات صلة بمادة الرياضيات، واستخدام الكتابة للتعبير عن الأفكار الرياضية (Baxter and et al., 2005; Crespo, 2003). ففي هذا السياق يمكن تكليف الطلبة بعمل تقارير بحثية، أو بعمل مجلة حائط داخل الصف، ويعتبر ذلك بمثابة نافذة تكشف للتعلم عن طبيعة التفكير لدى الطلبة واتجاهاتهم وميولهم نحو الرياضيات، حيث يقوم المعلم هنا بتكييف الطالب بكتابة خبرته المعاشت بكل تفاصيلها وذلك عند انهماكه في عملية التعلم وإنجاز النشاطات والمهمات الرياضية، ويبين الطلاب هنا طبيعة الأفكار التي خالفته عند أداء تلك النشاطات والمهمات، والصعوبات والعقبات التي واجبها وكيف استطاع التغلب عليها (Goldsby and Cozza, 2002; Powell, 1997; Weiss, 2003). ويغلب هذا الصدد يشير سميث (Di Pillo and Sovchik, 1997; Smith حيث يقول: "نحن نكتشف ما نفكر فيه عندما نقوم بالكتابة".

وعملية تعزيز وتمييز مهارات الاتصال الرياضي لدى الطلبة، تستلزم من

Open-ended Questions (Cai and Jakabcsin, 1996)

مشكلة الدراسة

وتحديداً سعت الدراسة إلى الإجابة عن السؤال الآتي:

ما أثر تنمية مهارات الاتصال الرياضي في القدرة على حل المسألة الرياضية لدى طلبة الصف الثامن الأساسي؟
فرضية الدراسة

لا يوجد فرق ذو دلالة إحصائية عند مستوى الدلالة (α = 0.05) بين متوسط علامات الطالبة في المجموعة التجريبية الذين يدرسون من خلال تمارين مهارات الاتصال الرياضي، ومتوسط علامات الطالبة في المجموعة الپابطة الذين يدرسون بالطريقة التقليدية في اختبار حل المسألة الرياضية.

التعريفات الإجرافية للدراسة

الاتصال الرياضي: التعبير عن الأفكار باستخدام لغة الرياضيات من رموز ومصططلحات وجدول ورسومات وأشكال هندسية وتمثيلات بيانية، ويتضمن الاتصال الرياضي المهارات الآتية: قراءة الرياضيات، والتحدث بها، وكتابة الرياضيات، والاستماع إلى الرياضيات، ومثير الرياضيات.

الطريقة التقليدية في التدريس: هي الطريقة التي يكون فيها للمعلم الدور الرئيسي في العملية التعليمية ويشكل محورها، حيث يقوم المعلم بالشرح والمناقشة وطرح الأسئلة، وينحصر دور الطالب في الإجابة عن أسئلة المعلم أو التعليق على إجابة زميله، أو طرح التساؤلات على المعلم.

المسألة الرياضية: موقف رياضي جديد ومميز يواجه الطالب ولا يكون لديه حل جاهز لهockey، فيطلب منه أن يفكر في هذا الموقف ويحله، ومن ثم يستخدم ما تعلمه سابقاً من معرفة رياضية لإيجاد الحل المناسب لهذا الموقف.

محددات الدراسة

- اقتصرت الدراسة على مجتمع الذكور فقط.
- تم قياس القدرة على حل المسألة الرياضية من خلال اختبار حل المسألة الرياضية المعد من قبل الباحث، وبالتالي فإن النتائج مرتبطة بطرق هذا الاختبار من حيث صدقها ومناسبتها للموضوع المراد قياسه.
الطريقة والإجراءات

مجتمع الدراسة:

تكون مجتمع الدراسة من جميع طلبة الصف الثامن الأساسي في مدارس
الذكورية التابعة لمديرية التربية والتعليم منطقة عمان الرابعة في مدينة
عمان، والمنتجمين في مدارسهم في الفصل الدراسي الثاني للعام الدراسي
2008/2009، والبالغ عددهم (496) طالب.

عينة الدراسة:

تتكون عينة الدراسة من (202) طالباً من طلبة الصف الثامن الأساسي
في إحدى المدارس التابعة لمديرية التربية والتعليم منطقة عمان الرابعة في مدينة
عمان والوزعين على شعبتين، وتم اختيار إحدى الشعبتين عشوائياً لتكون
المجموعة التجريبية وبلغ عدد طلابها (50) طالب، والأخرى المجموعة الضابطة
وبلغ عدد طلابها (52) طالب. ودرست المجموعة التجريبية الرياضيات من
خلال تنمية مهارات الاتصال الرباعي، بينما درست المجموعة الضابطة
بالطريقة التقليدية.

الإجراءات المتبعة لتنمية مهارات الاتصال الرياضي:

تم العمل على تنمية مهارات الاتصال الرياضي لدى طلبة المجموعة
التجريبية من خلال إتباع الخطوات والإجراءات التالية، وذلك خلال دراستهم
لوحدة "أنظمة المعادلات الخطية" من كتاب الرياضيات المقرر للصف الثامن
الأساسي للعام الدراسي 2009/2010:

1) استخدام أساليب التعلم التعاوني (العمل الجماعي)، وذلك وفق الإجراءات
الأتينة:
- تم تقسيم الطلبة إلى مجموعات تعاونية تحتوي كل منها (4-5) طالب،
- بحيث تكون جميعها متساوية تقريباً في المستوى، من خلال احتواء كل
المجلد السادس والعشرون
منها على الطلبة المتميزين والمتوسطين ومنخفضي التحصيل، كما تم تدريب الطلبة على العمل الجماعي وتوسيع الأدوار فيما بينهم. كما تم تكليف كل مجموعة باختيار اسم لها من أسماء العلماء والمشاهير في الرياضيات، وتقديم نبذة عن العالم الذي تم اختياره اسمًا للمجموعة، وتم التركيز على العلماء العرب والمسلمين، وبيان إنجازاتهم ومساهماتهم في علم الرياضيات.

- تقديم أنشطة استقصائية تتيح الفرصة أمام الطلبة لأداء الفهم المعرفة الرياضية باعتلاجًا عن خبرتهم وتعلموا السابقين.

- تم تكليف كل مجموعة بإعداد عدد من السؤاليات الحياتية (التطبيقية) وبعض الألغاز والألعاب الرياضية التي يتطلب حلها استخدام المعرفة الرياضية موضوع الدرس، وتبادل تلك السؤاليات والألعاب والألغاز الرياضية ما بين مجموعات الطلبة، ومن ثم العمل على إيجاد الحل المناسب لها.

- إتاحة الفرص أمام مجموعات الطلبة لتبادل الأفكار والاقتراحات والخبرات فيما بينهم خلال أدائهم للأنشطة الرياضية، وتبادل ما يجول في أذهانهم من أفكار وآراء ومقترحات.

- تقوم كل مجموعة من المجموعات التعاونية بعرض الحلول التي توصلت إليها للمهمات الرياضية المعروضة عليهم، وتوسيع الخوارزميات وعمليات التفكير التي تم استخدامها للوصول إلى تلك الحلول، ثم ينتقل الصف بجميعه للمشاركة في تقويم الحلول التي تطرحها كل مجموعة من المجموعات التعاونية، ثم يتم بمساعدة المعلم التوصل إلى حل مشترك يتفق عليه الجميع لهذه المهمات الرياضية.

(2) إتاحة فرص التفاعل بين المعلم والطلبة، وذلك من خلال استخدام أساليب متنوعة في طرح الأسئلة داخل غرفة الصف، ومن تلك الأساليب استخدام الطريقة السقراطية (طريقة الحوار).
وتقوم هذه الطريقة على الحوار بين المعلم والطلبة. ويكون هذا الحوار على شكل من أشكال المناقشة (السؤال – الجواب).

(2) تطوير قدرات الطلبة على الكتابة، وذلك من خلال تكليف الطلبة (فرادي وجماعات) بعمل تقارير بحثية تتناول موضوعات متنوعة ذات صلة بمادة الرياضيات؛ مثل:

- سير علماء الرياضيات الذين أسهموا في تطور الفكر الرياضي، وبالخصوص علماء العرب والمسلمين.
- تتبع التطور التاريخي لبعض المفاهيم والتعليمات الرياضية.
- دور الرياضيات في تطور العلوم الأخرى، وبيان العلاقات المتبادلة والمترابطة ما بين الرياضيات وتلك العلوم. وبيان بعض جوانب إسهام الرياضيات فيما يعيشه العالم الآن من تقدم علمي وتقني.
- تناول بعض جوانب استخدام الرياضيات في المظاهر الحياتية المختلفة التي يعيشها الطلبة.

وللتحقق من صدق الإجراءات والخطوات المتبعة لتنمية مهارات الاتصال الرياضي لدى الطلبة، تم عرض تلك الإجراءات والخطوات على عدد من المحكيمين المختصين في مناهج الرياضيات وأساليب تدريسها من أعضاء هيئة التدريس في الجامعات الأردنية. وتم إجراء التدريبات اللازمة لضوء ما أفاد به المحكيمون من ملاحظات واقتراحات.

أداة الدراسة (اختبار حل المسألة الرياضية):

للإجابة عن سؤال الدراسة، قام الباحث بإعداد اختبار لقياس القدرة على حل المسألة الرياضية، حيث استعان الباحث بنائه بمراجعة الأدب التربوي من كتب ودوريات ومجلات علمية ودراسات تناولت تطوير وقياس القدرة على حل المسألة، حيث تم هنا قياس قدرة الطالب على حل المسألة الرياضية من خلال أدائه للمهمات الآتية:
فهم المسألة: ويقصد بذلك قدرة الطالب على تحديد المعطيات والمطلوب، وتوضيح المعلومات والبيانات الواردة في المسألة من خلال استخدام الجداول والرسومات والأشكال الهندسية والتمثيلات البيانية.

وضع خطة الحل: ويقصد بذلك قدرة الطالب على الربط بين المعطيات والمطلوب، وتوضيح استراتيجية الحل والخطوات التي سيبثها للوصول إلى المطلوب.

تنفيذ الحل: ويقصد بذلك قدرة الطالب على تنفيذ استراتيجية الحل، والخطوات التي قام برسمها للوصول إلى المطلوب.

التحقق من صحة الحل: ويقصد بذلك قدرة الطالب على التحقق من صحة الحل الذي توصل إليه، وذلك من خلال استخدام طريقة أخرى للحل، أو من خلال التدوين.

وتم إعطاء كل مسألة (4) علامات موزعة بالتساوي على الخطوات المتعلقة لحل المسألة، وذلك على النحو الآتي: فهم المسألة (علامة واحدة)، وضع خطة الحل (علامة واحدة)، تنفيذ الحل (علامة واحدة)، والتحقق من صحة الحل (علامة واحدة). كما راعى الباحث عند بناء فقرات الاختبار، تناولها للموضوعات الرياضية التي درسها الطالب في الصف الثامن و#. الصروف السابقة. كما تم تقديم المسائل الرياضية من خلال المواضيع التالية:

1. موقف رياضي (غير حياتي):

مثال:

- في مثلث متساوي الساقين، قياس إحدى زاويته القاعدة يزيد بمقدار (15) عن مثلتي قياس زاوية الرأس، فما قياسات زوايا المثلث؟

(2) جد الكسر العادي الذي إذا أضيف إلى سبسطه العدد (3) أصبح الكسر مساويا له في ($\frac{2}{3}$). وإذا طرحت من مقامه العدد (1) أصبح الكسر مساويا له في ($\frac{2}{5}$).
 موقف حياتي (تطبيقي):

مثال:

سلتان ٢٤ كل واحدة عدد معين من البرتقال، لو أخذنا برتقال من السلة الأولى وأضفناها إلى السلة الثانية لأصبح عدد البرتقال في السلة الأولى مساويا لعدد البرتقال في السلة الثانية، وإذا أخذنا برتقال من السلة الثانية وأضفناها إلى السلة الأولى لأصبح عدد البرتقال في السلة الأولى ضعف عدد البرتقال في السلة الثانية، ما عدد البرتقال في كل من السلتين؟

مع أحمد عدد من الدنانير، ومع سامر ثلاثة أمثال ما مع أحمد، فإذا أعطي سامر أحمد (٥) دنانير، يصبح مع كل منهما المبلغ نفسه. فكم دينارا مع كل من أحمد وسامر؟

أحذية رياضية:

مثال:

سُل رجل عن عمره فنجاب: لا أذكر، لكنني أعلم أن أخي يكبرني بستين، وأختي تكبر أخي بأربع سنوات، وكان عمر والدتي (٥٠) سنة عندما أنجبتي، ومعدل أعمارنا الأربعة الآن (٣٩) سنة، فما عمر كل منهم؟

فيّ قديم الزمان، أراد أحد الملوك أن يزور ابنته لشباب يتمتع بالذكاء، ولذا اشترط فيهم يتقدم لخطبتها أن يقوم بحل اللغز التالي: أقسم العدد (٤٥) إلى أربعة أجزاء بحيث إذا زدت (٢) على الجزء الأول، وطرحت (٢) من الجزء الثاني، وضربت (٢) في الجزء الثالث، وقسمت الجزء الرابع على (٢)، تكون النتائج متساوية؟ فما قيمة كل جزء من الأجزاء الأربعة؟

وللتحقق من صدق الاختبار تم عرض فقرات الاختبار على عدد من المحكمين المختصين في مناهج الرياضيات وأساليب تدريسها والقياس والتقديم من أعضاء هيئة التدريس في الجامعات الأردنية. وتم إجراء التعديلات وصياغة
بعض النقرات بناءً على الملاحظات والتوصيات التي أشارت إليها لجنة المحكمين. وبلغت العلامة الكلية للاختبار (٤٠) علاماً موزعة بالتساوي على (١٠) مسائل رياضية.

وللحصول على ثبات الاختبار، تم تطبيقه بصورة النهائية على عينة مؤلفة من (٤٧) طالب من خارج عينة الدراسة ومن ثم حساب معامل الثبات للاختبار باستخدام معادلة كودر - ريتشاردسون ٢١ (KR-21) الذي بلغ (٠.٨٥)، وهذه القيمة مناسبة لاستخدام الاختبار لأغراض الدراسة.

إجراءات الدراسة (تنفيذ التحريبة)

١- بعد اختيار عينة الدراسة، تم تدريس المعلم الذي قام بعملية التدريس على الإجراءات والخطوات المتبعة لتنمية مهارات الاتصال الرياضي لدى الطلبة. وتجربة تلك الخطوات والإجراءات على عينة استطلاعية لمعالجة المشكلات والمعيقات التي من الممكن أن تظهر أثناء عملية التطبيق.

٢- قبل أسبوعين من البدء في تنفيذ الدراسة، تم تطبيق اختبار حل المسألة الرياضية على طلبة المجموعتين التجريبية والضابطة. وذلك للتحقق من تكافؤ المجموعتين في القدرة على حل المسألة الرياضية قبل تنفيذ الدراسة. وإيجاد المتوسطات الحسابية والانحرافات المعيارية، حيث تم التوصل إلى النتائج التالية والوضحة في الجدول رقم (١).

جدول رقم (١)

المتوسطات الحسابية والانحرافات المعيارية لعلامات المجموعتين الضابطة والتجريبية في التطبيق القبلي لاختبار حل المسألة الرياضية

<table>
<thead>
<tr>
<th></th>
<th>الانحراف المعياري</th>
<th>المتوسط الحسابي</th>
<th>العدد</th>
<th>المجموعة</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>٥.٧٦</td>
<td>١٤.١٢</td>
<td>٥٢</td>
<td>الانتقائية</td>
</tr>
<tr>
<td></td>
<td>٦.٤١</td>
<td>١٣.٢٣</td>
<td>٥٠</td>
<td>التجريبية</td>
</tr>
<tr>
<td></td>
<td>٦.٢٩</td>
<td>١٣.٨٧</td>
<td>١٠٢</td>
<td>الكلي</td>
</tr>
</tbody>
</table>
ويلاحظ من الجدول رقم (1) أن هناك فرقًا بين متوسط علامات الطالب في المجموعتين الضابطة والتجريبية في التطبيق القياسي لاختبار حل المسألة الرياضية، حيث بلغ المتوسط الحسابي لعلامات الطالب في المجموعة الضابطة (12, 14, 16), بينما بلغ المتوسط الحسابي لعلامات الطالب في المجموعة التجريبية (13, 15, 17), وللعرفة ما إذا كان الفرق بين متوسطي علامات الطالب في المجموعتين الضابطة والتجريبية ذات دلالة إحصائية، تم إجراء تحليل التباين الأحادي (One-Way ANOVA)، حيث تم التوصل إلى النتائج التالية والموضحة في الجدول رقم (2).

جدول رقم (2)

<table>
<thead>
<tr>
<th>مصفر التباين</th>
<th>مجموع المربعات</th>
<th>درجات الحرية</th>
<th>متوسط المربعات</th>
<th>قيمة (F) المحسوبة</th>
<th>الدلالة الإحصائية</th>
</tr>
</thead>
<tbody>
<tr>
<td>بين المجموعات</td>
<td>6000</td>
<td>1</td>
<td>6000</td>
<td>0,745</td>
<td>0,05</td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td>147,328</td>
<td>100</td>
<td>147,328</td>
<td>41,473</td>
<td>0,02</td>
</tr>
<tr>
<td>الكلي</td>
<td>157,328</td>
<td>101</td>
<td>157,328</td>
<td>41,473</td>
<td>0,02</td>
</tr>
</tbody>
</table>

ويلاحظ من الجدول رقم (2) أن قيمة (F) المحسوبة غير دالة إحصائياً عند مستوى الدلالة (α ≤ 0,05). وهذا يدل على عدم وجود فرق ذي دلالة إحصائية بين متوسطي علامات الطالب في المجموعتين الضابطة والتجريبية في التطبيق القياسي لاختبار حل المسألة الرياضية. ويستدل من النتائج الواردة في الجدول رقم (2) على تكافؤ المجموعتين التجريبية والضابطة في القدرة على حل المسألة الرياضية قبل البدء بتنفيذ الدراسة.

3 - تم البدء بتنفيذ الدراسة خلال الفصل الدراسي الثاني للعام الدراسي 2009/2008، حيث تم تدريس المجموعة التجريبية من خلال تنمية مهارات الاتصال الرياضي، بينما درست المجموعة الضابطة بالطريقة المعتادة للدراسة.

المجلد السادس والعشرون
التقريرية. وقد استغرق تدريس المجموعتين نفس العدد من الحصص؛
(19) حصة على مدار شهر كامل.

- بعد الانتهاء من تنفيذ الدراسة بأربعة أيام، تم تطبيق اختبار حل المسألة الرياضية على طلبة المجموعتين التجريبية والضابطة، وذلك للإجابة عن سؤال الدراسة واختبار فرضيتها.

المعالجة الإحصائية

تم استخدام البرنامج الإحصائي للعلوم الاجتماعية (SPSS)، والمعالجات الإحصائية الآتية: المتوسطات الحسابية والانحرافات المعيارية، وتحليل التباين الأحادي (One-Way ANOVA).

النتائج

يوضح الجدول رقم (3) المتوسطات الحسابية والانحرافات المعيارية لعلامات المجموعتين الضابطة والتجريبية في التطبيق البدعي لاختبار حل المسألة الرياضية.

جدول رقم (3)
المittelates الحسابية والانحرافات المعيارية لعلامات المجموعتين الضابطة والتجريبية في التطبيق البدعي لاختبار حل المسألة الرياضية

<table>
<thead>
<tr>
<th>المجموعة</th>
<th>الانحراف المعياري</th>
<th>المتوسط الحسابي</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>الضابطة</td>
<td>8,28</td>
<td>21,34</td>
<td>52</td>
</tr>
<tr>
<td>التجريبية</td>
<td>7,03</td>
<td>26,07</td>
<td>50</td>
</tr>
<tr>
<td>الكلي</td>
<td>7,66</td>
<td>23,75</td>
<td>102</td>
</tr>
</tbody>
</table>

و כגון ملاحظ من الجدول رقم (3) أن هناك فرقاً بين متوسطي علامات الطلبة في المجموعتين الضابطة والتجريبية في التطبيق البدعي لاختبار حل المسألة الرياضية، حيث بلغ المتوسط الحسابي لعلامات الطلبة في المجموعة الضابطة (21,34)، بينما بلغ المتوسط الحسابي لعلامات الطلبة في المجموعة التجريبية (26,07).
والمعرفة ما إذا كان الفرق بين متوسطي علامات الطلبة في المجموعتين الضابطية والتجريبية ذات دلالة إحصائية. تم إجراء تحليل التباين الأحادي (One-Way ANOVA) الجدول رقم (٤).

جدول رقم (٤)
نتائج تحليل التباين الأحادي لعلامات المجموعتين الضابطية والتجريبية في التطبيق البدعي لاختبار حل المسألة الرياضية

مصدر التباين	مجموع المربعات	درجات الحرية	متوسط المربعات	قيمتي (٨) الإحصائية
بين المجموعات	٥٧١,٩٦٠	١	٥٧١,٩٦٠	٠,٠٠٠١
داخل المجموعات	٥٣٢٩	١٠٠	٥٣٢٩	٠
الكلي	٥٩٣٤,٨٧٣	١٠١	٥٩٣٤,٨٧٣	٠

ذات دلالة إحصائية عند \(\alpha \geq ٠,٠٥ \)

وإليك من الجدول رقم (٤) وجود فرق ذي دلالة إحصائية بين متوسطي علامات الطلبة في المجموعتين الضابطية والتجريبية في التطبيق البدعي لاختبار حل المسألة الرياضية. حيث بلغت قيمة (٨) المجموعة (٠,٦٦٥) وهي دالة إحصائياً عند مستوى الدلالة (٠,٠٥). وهذا الفرق لصالح المجموعة التجريبية التي درست الرياضيات من خلال تنمية مهارات الاتصال الرياضي، حيث بلغ المتوسط الحسابي لعلامات الطلبة في المجموعة التجريبية (٣٦٧,٧٣) حين بلغ المتوسط الحسابي لعلامات الطلبة في المجموعة الضابطية (٣٤٢,١٠).

مناقشة النتائج

هدفت الدراسة الحالية إلى الإجابة عن السؤال الآتي: ما أثر تنمية مهارات الاتصال الرياضي في القدرة على حل المسألة الرياضية لدى طلبة الصف الثامن الأساسي؟
ابنطلق عن هذا السؤال الفرضية الصفرية الآتية: لا يوجد فرق ذو دلالة
إحصائية عند مستوى الدلالة (α ≥ 0.05) بين متوسط علامات الطلبة في
المجموعة التجريبية الذين يدرسون من خلال تنمية مهارات الاتصال الرياضي،
ومتوسط علامات الطلبة في المجموعة الضابطة الذين يدرسون بالطريقة
التقليدية بـ اختبار حل المسألة الرياضية.

وأشارت نتائج تحليل التباين الأحادي إلى وجود فرق ذي دلالة إحصائية
بين متوسطي علامات الطلبة في المجموعتين التجريبية والضابطة بـ اختبار
حل المسألة الرياضية، وهذا الفرق لصالح المجموعة التجريبية التي درست
الرياضيات من خلال تنمية مهارات الاتصال الرياضي، حيث كانت قيمة (F)
المحسوبة دالة إحصائياً عند مستوى الدلالة (α ≥ 0.05). وعليه تم رفض
فرضية الدراسة الصفرية.

وبناءً على ما تقدم، يمكن القول أن تنمية مهارات الاتصال الرياضي قد
عمل على تحسين قدرة الطلبة على حل المسألة الرياضية، وذلك بالمقارنة مع
الطريقة التقليدية بـ التدريس. وقد يعزى السبب بـ ذلك إلى أن الإجراءات
المتبعة بـ تنمية مهارات الاتصال الرياضي من استخدام أساليب التعلم التفاعلي
(العمل الجماعي) وإتاحة فرص التفاعل بين المعلم والطلبة. قد أسهمت بـ
تعزيز قدرة الطلبة على حل المسألة الرياضية، وذلك لأن حصول التفاعل
والنقاشات بين الطلبة، وتبادل الأفكار والاقتراحات والخبرات فيما بينهم خلال
أدائهم للنشاطات الرياضية، وتشارك ما يجوز بـ أذهانهم من أفكار وآراء،
والتعبير عن عمليات التفكير التي يستخدمونها أثناء أدائهم للنشاطات الرياضية
المتنوعة؛ سواء أكان ذلك التعبير كتابة أم لفظاً، هو خروج كل طالب بجملة من
الأفكار والأراء والاستراتيجيات التفكيرية التي تم تبادلها بين الطلبة، مما قد
يؤدي إلى تدريب وتعزيز قدرتهم على حل المسألة الرياضية.

كما أن تكليف الطلبة (فرادي وجماعات) بعمل تقارير بحثية تتناول
مواضيع متنوعة ذات صلة بمادة الرياضيات، وتقييم الطلبة بإعداد عدد من
المجلد السادس والعشرون
المواضيع

ضوء النتائج التي تمكنت منها هذه الدراسة، يوصي الباحث بما يلي:
- حث خبراء وواعظين مناهج الرياضيات ومؤلفي كتبها المدرسية ومعلمي الرياضيات على العمل على تنمية مهارات الاتصال الرياضي في تعليم وتعلم مادة الرياضيات، مما سيعكس ذلك إيجابياً على تنمية قدرة الطلبة على حل المسألة الرياضية.
- إجراء المزيد من الدراسات التي تتناول أثر تنمية مهارات الاتصال على متغيرات أخرى مثل الاتجاهات، والموارد، والتحصيل المباشر، والتحصيل المؤجل (الاحتفاظ) مع مادة الرياضيات، وغيرها من المواد الدراسية، ولصفوف ومراحل دراسية مختلفة، وحيث تشمل هذه الدراسات كلا الجنسين من الطلبة.
- حث الباحثين على تناول المسألة الرياضية من جوانب أخرى عديدة، مثل: تطوير طرق تدريس وسائل تعليمية وأساليب تقويم تساعد على تنمية قدرة الطلبة على حل المسألة الرياضية.
The Effect of Developing Mathematical Communication Skills on The Ability of Mathematical Problem Solving of Eighth Graders

Dr. Khamis M. Negem
Faculty of Educational Sciences
Al al-Bayt University - Al Mafrak
H.K.J

Abstract

The purpose of the study is to investigate the effect of developing mathematical communication skills on the ability of mathematical problem solving of eighth graders. A sample (n=102) was divided into two groups. One group was randomly chosen to be the experimental group that studied mathematics with developing mathematical communication skills, the other was the control group that studied mathematics using traditional method. The instrument of the study was a mathematical problem solving test. Data analysis procedures using One-Way ANOVA revealed a positive effect of developing mathematical communication skills on students' ability of mathematical problem solving.
المراجع

