العلاقة بين التفكير الشكلي لطلاب الصف الأول الثانوي العلمي واتجاهاتهم نحو الأحياء ومستوى معرفتهم المفاهيمية بالبناء الضوئي

د. سالم عبد العزيز الخوادله
قسم المناهج والتدريب - كلية العلوم التربية
جامعة آل البيت - المفرق - الأردن

الملخص

هدفت هذه الدراسة إلى تحديد مستوى المعرفة المفاهيمية بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي وعلاقته بالتفكير الشكلي والاتجاهات نحو الأحياء، من خلال الإجابة عن الأسئلة الأربعة الآتية:

1- ما مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي؟ وهل يختلف هذا المستوى عن المستوى المقبول تحتوي (9.8 درجة)؟

2- هل يختلف مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي باختلاف مستوى تفكيرهم الشكلي (محسوس، مجرد)؟

3- هل يختلف مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي باختلاف اتجاهاتهم نحو الأحياء (أيجابي، سلبي)؟

4- هل هناك اثر في مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي يعزى لتفاعل بين التفكير الشكلي والاتجاهات نحو الأحياء؟

تكونت عينة الدراسة من (130) طالباً شكلت من نسبتهم 48.8% من أفراد المجتمع الأصلي.

ولجمع البيانات، تم استخدام ثلاث أدوات هي: اختبار التفكير المنطقي، ومقياس الاتجاهات نحو الأحياء، واختبار المعرفة المفاهيمية بالبناء الضوئي.

ولاختبار فرضيات الدراسة، تم استخدام اختبار (t) وتحليل التباين الثنائي ذي التصميم العامل (2×2)، وبعد إجراء التحليلات الإحصائية المناسبة توصلت الدراسة إلى النتائج الآتية:

- وجد أن متوسط المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي
المقدمة

تشهد المعرفة العلمية تطوراً متسارعاً كما ونوعاً، حيث تتضاعف القدرة المعرفية العلمية بسرد قليل من السنوات، مما يجعل الإلمام بجزيئات المعرفة العلمية أمرًا غاية الصعوبة وعليه، فإن هذا الانفجار العظيم الهائل في العلم، يتطلب من الفرد أن يتعلم أكثر وأسرع لاستيعاب كل جديد في المعرفة، وما أن الفرد بطيعته، ذو قدرات عقلية محدودة فإن هدف التربية العلمية هو صناعة أفراد يبنون النظريات التي تلخص جزيئات المعرفة، وليس الاهتمام بتعلم جزيئات المعرفة المتفرعة. لذلك، ينادي منظور التربية العلمية وتدريب العلوم بخفض عدد الموضوعات التي على التعلم معرفتها وذلك لتوفير بعض الوقت للتأكد على المفاهيم الكبرى الرائدة حتى يتعلمه التلخيص بشكل أفضل، أي المبادئ بهدف العميق في المعرفة وليس التوسع فيها على حساب العميق (Disessa, 1988).

فطبيعة المعرفة العلمية تؤكد أن الانفجار العظيم الهائل يؤدي إلى تقليل عدد التعميمات الرائدة في العلم، والتي تتضمن كل منها عدداً هائلاً من المعلومات، وهذه الطبيعة حولت هدف التربية العلمية من التركيز على المبادئ
والحقائق المنفردة، إلى التركيز على تطوير فهم التعميمات الرئيسية للعلم (Constructivism) (Novak,1966). ويعلل أصحاب المدرسة البنائية حيث ينظرون إلى المعرفة كمعان أو أبينية معرفية يضيفها العقل مباشرة على المعطيات الحسية، ويرون أن الأفكار العلمية تتطور لدى جماعة العلماء على شكل ثورة، حيث يوجد لديهم فترة ما إطار فكري معين يسمي كون العلم الطبيعي، ويسميه لآكالوس البؤرة النظرية الصلبة (Lakatos (Hewson,1981). ومع الزمن يواجه هذا الإطار الفكري عدداً من الصعوبات البسيطة أولاً، ثم الحاسمة فيما بعد، مما يدفع عدا من العلماء إلى التفكير بـ إطار فكري جديد يفسر الشذوذات الحاسمة، وشتماً فشلناً، بدأ العلماء بالنظر في الإطار الفكري القديم وتبني الإطار الفكري الجديد. كما يرون أن هذه الأطر الفكرية تعمل كموجهات للملاحظات والأدوات البحثية، وتعطي الفرد نظرية جديدة للعالم تختلف عن نظرته السابقة التي حدها إطاره الفكري السابق (Kuhn,1970).

ويرى أيبيمولوا (Abimbola,1988) أن المناهج الجديدة لـ فلسفة العلم أدت إلى ظهور نظرية التغير المفاهيمي التي تفترض أن فهم تطور المفاهيم العلمية خلال تقدم العلم يساعد في فهم التغير المفاهيمي لدى الطلبة. فالفلسفة البنائية تنظر إلى التعلم على أنه تكوين الفرد لفهمه الخاص بجزء من المعرفة العلمية التي تتصل بالبيئة المحيطة بالمتعلم (Pines,1986). ذلك لأن المناهج العلمية تتطور لدى المتعلم بطريقة مماثلة لتطورها خلال تقدم العلم.

فالمناهج العلمية - والجاح هذا - ضرورية جداً في العلم، لأنها تعتبر نوعاً من التجريدات التي تلخص الصفات المشتركة بين العديد من الحقائق الجزيئية، أو باعتبارها نقاط مبدئية لفهم المبادئ والقوانين والنظريات (لبيب، 1982); والمناهج العلمية ليست تعريفات تحفظ، وإنما هي تكوينات واستدلالات عقلية يكونون الفرد المتعلم ذاتهاً (زيتون، 1985). حيث يتضمن تكوينه ثلاث عمليات هي التمييز، التنظيم والتصنيف، والتعليم الذي يعني توصل الفرد إلى

ويعد البناء الضوئي أحد عمليات الأيض، إذ يتم فيها بناء الكربوهيدرات التي تشكل الأساس لصنع باقي المواد الغذائية من بروتينات ودهون التي تتكون المجلد الحادي والعشرون
منها أجسام الكائنات الحية. وتعد المفاهيم المتعلقة بالبناء الضوئي من بين المفاهيم الإحصائية الصعبة التي تم تناولها بالطلبة لها بالدراسة والبحث. وأشارت الدراسات إلى أن الطلبة يظهرون مفاهيم بديلة للمفاهيم العلمية السليمة المتعلقة بالبناء الضوئي بدرجة كبيرة في مختلف المراحل الدراسية، وتتسم هذه الأنماط من المفاهيم البديلة بالثوابت ومقاومة التغيير بطرق التدريس التقليدية (Hazel & Prosser, 1994; Waheed & Lucas, 1992).

و فيما يتعلق بالاتجاهات، فإن وصف شخص بأن لديه اتجاها معينا ما هو إلا تعبير عن سلوك ذلك الشخص، لأنه لا يمكن القول أنه يملك ذلك الاتجاه، إنما إذا أبدى السلوك نفسه في عدد من المجالات المشابهة، وبالتالي فإنه يمكن التنبؤ بسلوك شخص ما في موقف معين من معرفة اتجاهاته.

المجلد الحادي والعشرون
والاتجاهات ليست موروثة، وإنما هي متعلقة تتكون لدى الفرد بناءً على الخبرات التي يمر بها (1985).

وتجدر الإشارة إلى أن هناك شخص لا يريد أن يجعل الفهم قضية ما، فإن من غير الممكن أن يجعل الفهم، وهذا ما يبره ما للاتجاهات من دور في عملية التعلم، فهي تساعد الفرد في فهم المعرفة العلمية وتسيرها (Billeh & Zakhariades, 1975) كما تشير إلى النظرية التي يتبناها الفرد لحل المشكلات، وتكوين الأفكار والمعلومات، واتخاذ القرارات (Germann, 1988، وA. Schrigely, 1990)، فإنها قد تؤثر في أفعال التعلم بحيث يعكس ذلك على البناء الابتكاري للفرد. ولهذا، قد يوجد أثر لاتجاه التعلم نحو الأحياء في إسهام المفاهيم الإيجابية السليمة.

إن دراسة العلاقة بين العوامل المعرفية والشخصية والتفاعل بينها في اكتساب المفاهيم العلمية السليمة تساعد في تكوين المشاعر والتفكير وأفعال التعلم في اكتساب المفهوم. وهذا يؤثر في التعلم ذا معنى بالنسبة للمتعلم، الأمر الذي يكسبه فهما سليما وقدرة على تطبيق المفاهيم العلمية في المواقف الجديدة.

ينضاف إلى ذلك أن الأطر المفاهيمية السليمة تزود الفرد بالأدوات البحثية المناسبة، والأسس السليمة لинтерسير الظواهر الطبيعية التي يدرسها الفرد.

وبالرغم من فوائد الدراسات التي تناولت البنية المفاهيمية التي يكونها المتعلمون في الفروع العلمية المختلفة، وتلك التي تناولت أساليب تعديل المفاهيم البديلة أو إلغائها، إلا أن هناك حاجة لدراسة العلاقة بين العوامل المعرفية والشخصية من جهة وإسهام المفاهيم العلمية السليمة التي تختلف عن المفاهيم البديلة التي يكونها المتعلمون من جهة أخرى (Trumper & Gorsky, 1993).

مشكلة الدراسة وأهدافها:

اتجه البحث التربوي في مجال التربية العلمية خلال العقدين الآخرين من القرن الماضي لدراسة البنية المفاهيمية التي يكونها الطلاب في موضوعات المجلد الحادي والعشرون
علمية مختلفة، ولخصت قشر (1983) نتائج العديد من الدراسات في ميدان المفاهيم البديلة، حيث أشارت الباحثة إلى أن العديد من الطلاب يحملون المفاهيم البديلة نفسها، وتقاويم المفاهيم البديلة التغير خصوصاً بالطرق التقليدية في التدريس، كما أشارت إلى تميز هذه المفاهيم البديلة بأساليب تاريخية؛ أي أن المفاهيم البديلة التي يكونها المتعلمون تطابق أفكار العلماء السابقين بشروط معيّنة. وفي ضوء هذه النتائج، اهتم الباحثون التربويون بدراسة الطرق المناسبة لتدريس المواد العلمية (فيزياء، كيمياء، أحياء) بحيث تكمل هذه الطرق إلقاء أو تعديل المفاهيم البديلة، وإكساب المتعلمين الفهم العلمي السليم.

وتناول البحث التربوي هذا الميدان جانبين فقط، هما: دراسة البنية المفاهيمية، وطرق تعديل المفاهيم البديلة أو إلغائها. وينذر البحث لذلك العلاقات بين العمليات المعرفية والعامل الشخصية من جهة، واكتساب المفاهيم العلمية السليمة من جهة أخرى، رغم أهميّة هذا الجانب التي تفرض دراسته طبيعة العلم ذاتها؛ حيث يمتاز العلم بأنه أبتينية مفاهيمية وعمليات معرفية، وتكامل الأبتينية المفاهيمية والعمليات المعرفية والعامل الشخصية في إنتاج المعرفة وتعديلها. كما أن تاريخ تطور العلم يشير إلى نظريات نظرية تظهر على شكل تغير مفاهيمي، يرافقه استخدام أدوات بحثية وعمليات معرفية مناسبة، ولبرز نظرية جديدة للظواهر الطبيعية: (1970).

لهذا فإن بناء نظرية تغير مفاهيمي شاملة يتطلب دراسة العلاقة بين العمليات المعرفية والجوانب الشخصية من جهة، واكتساب المفاهيم العلمية السليمة من جهة أخرى. وعلى حددت مشكلة الدراسة الحالية بالسؤال الرئيسي التالي:

ما العلاقة بين التفكير الشكلي لطلاب الصف الأول الثانوي العلمي واتجاهاتهم نحو الأحياء من جهة ومستوى معرفتهم المفاهيمية بالبناء الضوئي

المجلد الحادي والعشرون

العدد 82 - مارس 2007

د. سالم الخالدي
من جهة أخرى، ويشكل مجددًا، هدف هذه الدراسة إلى الإجابة عن الأسئلة الفرعية الآتية:

1 - ما مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي؟ وهل يختلف هذا المستوى عن المستوى المقبول تربويًا (9.8 درجة)؟

2 - هل يختلف مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي باختلاف مستوى تفكيرهم الشكلي (محسوس، مجرد)؟

3 - هل يختلف مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي باختلاف اتجاهاتهم نحو الأحياء (إيجابي، سلبي)؟

4 - هل هناك فروق في مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي يعزى للتفاعل بين مستوى التفكير الشكلي والاتجاهات نحو الأحياء؟

فرضيات الدراسة

في ضوء الأسئلة السابقة، صيغت فرضيات الدراسة الصفرية على النحو التالي:

- الفرضية الأولى: مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي لا يختلف بدلالة إحصائية عن المستوى المقبول تربويًا (70% أي 9.8 درجة).

- الفرضية الثانية: لا توجد فروق في مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي تعزى إلى مستوى التفكير الشكلي (محسوس، مجرد).
الفرضية الثالثة: لا توجد فروقٍ في مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي تعزى إلى مستوى اتجاهاتهم نحو الأحياء (إيجابي، وسلبي)?

الفرضية الرابعة: لا يوجد أثر في مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي يعزى للتفاعل بين التفكير الشكلي والاتجاهات نحو الأحياء؟

التعريفات الإجرائية

ورد في هذه الدراسة عدد من المصطلحات الأساسية، وفيا يلي التعريفات الإجرائية لها.

الاتجاه: يعرف الاتجاه في هذه الدراسة بأنه محصلة مشاعر الفرد نحو مادة الأحياء التي تتكون بفعال خبرته وتعامله معها، بحيث تكون قادرة على تحريك الفرد وتوجيهه لاتخاذ موقف التأييد أو المعارضته منها. وقد قيس إجرائياً بمحصلة استجابات الطالب النقطية (الاتجاهات المعلنة) على فترات مقياس مهارات الاتجاهات نحو الأحياء كما تعبر عنه العلامة الكلية التي حصل
عليها الطالب على هذا القياس. ومن ثم تحديد مستوى الاتجاه بمقارنته بنقطة
حياد الاتجاه والتي تقابل العلامة (14) على مقياس الاتجاهات نحو الأحياء.

التعريف المفاهيمي: هي العلامة التي يكونها الفرد فيما يتصال بموضوع
معين والتي تمثل العلامة التي يكونها العالم المختص في ذلك الموضوع. وفقًا لهذه
الدراسة، تم قياس العلامة الفماهيمي أثناء (درجة) طلاب الصف الأول الثانوي
العلمي من خلال استجابتهم على اختبار العلامة المفاهيمي بموضوع البناء
الضوئي الذي قام الباحث بإعداده لهذه الدراسة.

أهمية الدراسة

تبع أهمية الدراسة لكونها من الدراسات الأولية في الأردن، حسب
معرفة الباحث، حيث تهدف الدراسة إلى استقصاء العلاقة بين التفكير الشكلي
والاتجاهات نحو الأحياء و اكتساب الطلبة للفهم العلمي السليم بموضوع البناء
الضوئي، فهي تبحث في العلاقة بين عامل عقلي وعامل انتقائي وتكوين الفهم
العلمي السليم عند التعلمي. وتأتي هذه الدراسة لبناء نظرية التغيير
المفاهيمي، وذلك بتحديد دور التفكير الشكلي والاتجاهات في اكتساب المفاهيم
العلمية، وبالتالي تحدد موقع كل منها في نظرية التغيير المفاهيمي.

كما يؤمل أن تنهد هذه الدراسة لدراسات أخرى. تتناول عوامل أخرى
من عوامل بيئة التعلم والتفاعل بين هذه العوامل بحيث يتحول البحث التربوي
إلى دراسة العوامل ذات العلاقة بالفماهيمي دون التركيز على دراسة
الأفكار المفاهيمي وأساليب تعديلها فقط. الأمر الذي يساعد في تعميم التدريس
ب心仪的 براهم دور العوامل المؤثرة في التغيير الفماهيمي، وبالتالي وجود
 استراتيجيات تساعد في إكساب المتعلمين الفهم العلمي السليم للظواهر
الطبيعي فحيدة بها.
حدود الدراسة

اقترنت هذه الدراسة على عينة مكونة من (130) طالباً من طلاب الصف الأول الثانوي العلمي، مديرية التربية لقصبة المفرق بتوزعون عليه أربع شعب، وقد اعتبرت كافية لأغراض الدراسة. لذا فإن نتائج هذه الدراسة تتحدد بحجم العينة ومدى تمثيلها لمجتمع الدراسة الأصلي.

كما تتم تقدد نتائج هذه الدراسة بمدى صدق وثبات أدوات الدراسة التي طُورها باحثون سابقون، أو التي طورها الباحث، ومدى تعاون أفراد العينة في الاستجابة لأدوات الدراسة، ومدى انعكاس استجابات الطلبة اللفظية على مقياس الاتجاهات نحو الأحياء لتصوراتهم ومشاهيرهم الواقعيّة لمبحث الأحياء.

الدراسات السابقة

أجرى عواد (1981) دراسة هدفت إلى تقسيم أثر العمليات المعرفية، وأسلوب التدريس (تحليل المفهوم/الطريقة التقليدية) في تأكسد المفاهيم المجردة في علم الأحياء. وأظهرت النتائج أن مستوى العمليات المعرفية أثرًا في خلال إحصائية في استيعاب طلبة الصف الثانوي العلمي للمفاهيم المجردة في علم الأحياء.

ودرس طربيه (1985) أثر مستوى العمليات المعرفية في مستوى المعرفة المفاهيمية لمفهوم DNA & RNA، ووجد الباحث أن نسبة الطلبة الذكور ذوي التفكير المحسوس تختلف عن نسبة الطلبة ذوي التفكير المجرد بدلالة إحصائية على معظم المفاهيم البدائل ذات العلاقة بمفهومي DNA & RNA، كما بينت نتائج الدراسة أن نسبة الطلبة الإناث ذوات التفكير المجرد تختلف عن نسبة الطلبات ذوات التفكير المحسوس بدلالة إحصائية على معظم المفاهيم البدائل ذات العلاقة بمفهومي DNA & RNA.

وقد مجال مفاهيم الوراثة والانتخاب الطبيعي أجرى لاوسون وتوميسون دراسة هدفت إلى تقسيم أثر التفكير الشكلي (Lawson & Thompson, 1988)
والسعة العقلية والذكاء اللطفي، والأسلوب المعرفي الذي اكتسب الفهم العلمي السليم للوراثة والانتخاب الطبيعي. وعليه، فقد تم اختيار (131) طالبًا من طلبة الصف السابع على اختبار مثالي عن مبادئ الوراثة والانتخاب الطبيعي.

وبعد تحليل النتائج أظهرت النتائج أن المتغير الوحيد الذي ارتبط بدلالة إحصائية مع عدد المفاهيم البديلة هو التفكير الشكلي، حيث أظهرت النتائج أن الطلبة ذوي التفكير المجرد يحملون مفاهيم بديلة بدرجة أقل من نظرائهم من ذوي التفكير المحسوس.

وقام لاوسون وويلزر (1990) بدراسة هدفت إلى تقصي العلاقة بين التفكير الشكلي للطالب وتغيير المعرفة المفاهيمية لمفهوم الحياة. وتبين أن الطلبة ذوي التفكير المحسوس يحملون مفاهيم بديلة لمفهوم الحياة بدرجة أعلى من الطلبة ذوي التفكير المجرد؛ كما تبين أن الطلبة من ذوي التفكير المحسوس أقل قدرة على تعديل المفاهيم البديلة خلال التدريس وأقل التزاما بالمفاهيم العلمية السليمة من زملائهم ذوي التفكير المجرد.

وأجرى لاوسون وورستنوب (1992) أثر كل من التفكير الشكلي، والمعرفة السابقة، والالتزام الديني في اكتساب وتعديل المعرفة المفاهيمية في موضوع التطور. وبينت النتائج أن القدرة على التفكير المجرد ترتبط بدلالة إحصائية بمستوي المعرفة المفاهيمية قبل وبعد التدريس؛ ولم
يظهر للمعرفة السابقة أثر ذو دلالة إحصائية في مستوى المعرفة المفاهيمية في موضوع التطور. كما بنيت النتائج أن الالتزام الديني يرتبط بمستوى التغير في المعرفة المفاهيمية في موضوع التطور بشكل عكسي.

واستقصى كافولو (Cavall, 1996) العلاقة بين التعليم ذي المعنى، والقدرة على الاستدلال والفهم لدى الطلبة وحل المشكلات في مواضيع الوراثة. وأشارت النتائج إلى أن مستوى التفكير الشكلي يرتبط بدلالة إحصائية في حل المشكلات في مواضيع الوراثة. كما بنيت النتائج أن القدرة على الاستدلال هي العامل الذي يمكن بواسطته التنبؤ بقدرة الطلبة على حل المشكلات في المواضيع الوراثية المختلفة.

وقام جونسون ولوسون (Johnson & Lawson, 1998) بدراسة هدفت إلى استقصاء الأثر النسبي للقدرة على الاستدلال، والمعرفة السابقة في تحصيل الطلبة في الأحياء عند استخدام طريقة العرض والطريقة الاستقصائية. وبينت النتائج أن القدرة على الاستدلال ترتبط بدلالة إحصائية بمستوى المعرفة المفاهيمية بطرق التدريس. ولم يظهر للمعرفة السابقة أثر ذو دلالة إحصائية في مستوى المعرفة المفاهيمية في الأحياء.

وأجرى أودم وكيلي (Odom & Kelly, 2001) دراسة هدفت إلى استقصاء أثر العمليات المعرفية، وطريقة التدريس (خريطة المفاهيم، ودورة التعلم، وطريقة العرض، وطريقة تجمع بين خريطة المفاهيم ودورة التعلم) في الفهم المفاهيمي لفهيم الانتشار والابتسامية. وتكونت عينة الدراسة من أربع صفوف (لطلبة) درسوا الأحياء في المرحلة الثانوية. ودرسوا مفاهيم الانتشار والابتسامية حسب الطرق المذكورة سابقاً. وأظهرت النتائج أن لمستوى العمليات المعرفية أثراً ذا دلالة إحصائية في الفهم المفاهيمي لفهيم الانتشار والابتسامية.

وقام تكيا (Tekkaya, 2003) بدراسة هدفت إلى استقصاء فاعلية طريقة تجمع بين خريطة المفاهيم ونصوص التغير المفاهيمي، والعمليات المعرفية في
فهم الطلبة لمفاهيم الانتشار والاسموية، وأظهرت النتائج أن مستوى العمليات المعرفية أثراً ذا دلالة إحصائية في فهم الطلبة لمفاهيم الانتشار والاسموية.

من جهة أخرى، ولدى مراجعة الباحث للدراسات المتعلقة بالعوامل المؤثرة في مستوى معرفة المفاهيم العلمية الأخرى غير مفاهيم الأحياء، وجد الباحث دراسة واحدة تناولت أثر العوامل المعرفية والشخصية في اكتساب المفاهيم العلمية السليمة في الفيزياء. وقام بهذه الدراسة المفعّل (1995) ودفعت إلى تحديد مستوى المعرفة المفاهيمية بقانونين نيوتن في الحركة عند طالب الصف الأول الثانوي العلمي وتأثره بالتفكير الشكلي والاتجاهات نحو الفيزياء. وتكوين عينة الدراسة من (176) طالباً من طلاب الصف الأول الثانوي العلمي في محافظة الفروق. ولجمع البيانات، تم استخدام ثلاث أدوات هي: اختباراً للفكر المنطقي، ومقياساً للاتجاهات نحو الفيزياء، واختباراً للمعرفة المفاهيمية بقانونين نيوتن في الحركة، وأشارت النتائج إلى أن متوسط المعرفة المفاهيمية بقانونين نيوتن في الحركة لدى طالب الصف الأول الثانوي العلمي يقل عن المستوى المقبول تربوي. كما أشارت النتائج إلى وجود فروق دلالة إحصائية في مستوى المعرفة المفاهيمية بقانونين نيوتن في الحركة لدى طالب الصف الأول الثانوي العلمي تعزى للفكر الشكلي، والاتجاهات نحو الفيزياء، والتفاعل بينهما.

يستخلص من العرض السابق للدراسات السابقة تركز الدراسات التي بحثت في العوامل المؤثرة في مستوى المعرفة المفاهيمية على دراسة أثر التفكير الشكلي أو المهارات الرياضية أو العوامل الأكاديمية، دون دراسة أثر العوامل الاتجاهية كالاتجاهات نحو موضوع التعلم أو الأثر المشترك للفكر الشكلي كقدرة عقلية والاتجاهات كجانب انفعالي في مستوى المعرفة المفاهيمية في الأحياء.

وهكذا، فإن مراجعة الأدب التربوي في ميدان موضوع البحث والدراسة الحالية التي تم استعراضه، ساعدت البحث في تنفيذ الدراسة الحالية لتحديد...
أثر التفكير الشكلي والاتجاهات نحو الأحياء والتفاعل المشترك بينهما في مستوى المعرفة المفهومية بمشروع البناء الضوئي لدى طلاب الصف الأول الثانوي العلمي.

الطريقة والإجراءات

مجتمع الدراسة وعينتها:

تكون مجتمع الدراسة من جميع طلاب الصف الأول الثانوي العلمي في مدارس الذكور الثانوية التابعة لمديرية التربية والتعليم لقصبة المفرق، والمنتظمين فيها للعام الدراسي 2003/2004. وبلغ عددهم (129) طالباً
يدرسون على خمس مدارس موزعة على سبع شعب.

أما عينة الدراسة فتكون من (100) طالباً موزعة على 4 شعب: حيث تم اختيار (4) شعب دراسية بالاختيار العشوائي باتباع مبدأ الطريقة العنقودية العشوائية وذلك باختيار (الشعبة) كوحدة اختيارية للدراسة. واعتمد الباحث بـ اختصارrpmينه هذه الطريقة على أن طاب أي شعبة مدرسة معينة لا يختلف عن طلاب أي شعبة نفس المستوي في المدارس الأخرى من حيث عوامل العمر والوضع الاجتماعي والاجتماعي التي قد تؤثر على أي من متغيرات الدراسة.

وتم توزيع أفراد العينة وفقاً لمتغيري التفكير الشكلي والاتجاهات نحو الأحياء، حيث تم اعتبار الطلاب الذين بلغ أداوهم على اختبار التفكير المنطقي أقل من (4) ذوي تفكير محسوس; أما الطلاب الذين بلغ أداوهم على نفس الاختبار (4) فما فوق فقد تم اعتبارهم ذوي تفكير مجرد، كما اعتبر الطلاب الذين بلغ أداوهم على مقياس الاتجاه نحو الأحياء (114) وأقل ذوي اتجاه سلبي نحو الأحياء حين اعتبار الطلاب الذين بلغ أداوهم على المقياس نفسه أكثر من (114) ذوي اتجاه إيجابي نحو الأحياء، والجدول رقم (1) يبين توزيع أفراد عينة الدراسة وفقاً لمتغيري التفكير الشكلي والاتجاهات نحو الأحياء.
جدول رقم (1)
توزيع أفراد عينة الدراسة وفقاً لمتغير التفكير الشكلي والاتجاهات نحو الأحياء

<table>
<thead>
<tr>
<th>المجموع</th>
<th>سلبي</th>
<th>إيجابي</th>
<th>الاتجاه نحو الأحياء</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>التفكير الشكلي</td>
</tr>
<tr>
<td>54</td>
<td>12</td>
<td>42</td>
<td>مجدد</td>
</tr>
<tr>
<td>76</td>
<td>30</td>
<td>46</td>
<td>محسوس</td>
</tr>
<tr>
<td>المجموع</td>
<td>130</td>
<td>42</td>
<td>محسوس</td>
</tr>
</tbody>
</table>

ويبين الجدول رقم (2) النسب المئوية لأفراد عينة الدراسة وفقاً لمتغيري التفكير الشكلي والاتجاهات نحو الأحياء.

جدول رقم (2)

النسب المئوية لأفراد عينة الدراسة وفقاً لمتغيري التفكير الشكلي والاتجاهات نحو الأحياء

<table>
<thead>
<tr>
<th>المجموع</th>
<th>سلبي</th>
<th>إيجابي</th>
<th>الاتجاه نحو الأحياء</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>التفكير الشكلي</td>
</tr>
<tr>
<td>54,04%</td>
<td>41,04%</td>
<td>22,96%</td>
<td>مجدد</td>
</tr>
<tr>
<td>56,66%</td>
<td>33,34%</td>
<td>33,33%</td>
<td>محسوس</td>
</tr>
<tr>
<td>المجموع</td>
<td>100%</td>
<td>27,32%</td>
<td>محسوس</td>
</tr>
</tbody>
</table>

أدوات الدراسة:

أولاً - مقياس الاتجاهات نحو الأحياء:
قام الرازي (1989) ببناء هذا المقياس وتطويره، وذلك لقياس اتجاهات طلاب الصف الثالث الثانوي العلمي نحو الأحياء. ويتكون هذا المقياس من (38) فقرة. ويعتمد المقياس على تدريج ليكرت Likert، حيث استخدمت الدرجات الخمس الآتية للاستجابة: أوافق بشدة، أوافق، لا أجري، أعارض، أعارض بشدة، وأعطيت الاستجابات الخمس السابقة العلامات (1,2,3,4,5) على الترتيب إذا

المجلد الحادي والعشرون
كانت الفقرة إيجابية أما العلامات على الفقرات السلبية فتكون (0.4، 0.1) حسب ترتيب الاستجابة السابق ويتم حساب درجات الطالب المحتملة على المقياس بجمع جميع درجاته على الفقرات الإيجابية والسلبية (الملحق رقم 1).

وتم التأكد من صدق المقياس بطرق مختلفة في الدراسة التي تم فيها بناؤه لأول مرة (الرازيحي، 1989). وبلغ معامل ثباته باستخدام معادلة كرونباخ ألفا (0.95).

ثانياً - اختبار التفكير المنطقي:

قامت أبو رمان (1991) بتطوير هذا الاختبار لقياس التفكير الشكلي لدى طلبة الصف الأول الثانوي العلمي، ويتكون هذا الاختبار من ثمان (8) أقعارات، ويعتمد الاختبار على طريقة الاختيار من متعدد، حيث يختار الطالب جواباً للسؤال من خمسة اختيارات، ثم يختار سبباً لجوابه من خمسة بدائل.

ولكي يكون الجواب صحيحاً يجب أن يختار الطالب الجواب الصحيح والسبب الصحيح (الملحق رقم 2).

وتتم التحقق من صدق الاختبار من قبل أبو رمان من خلال إجراءات تطويره وبدالة صدق المحتوى. أما ثبات الاختبار فبلغ (0.66) باستخدام معادلة كيودر ريتشاردسون (KR20) واعتبر مقبولاً لأغراض الدراسة.

ثالثاً - اختبار المعرفة المفاهيمية:

تم تطوير هذا الاختبار وفق الخطوات التالية:

1 - حلل محتوى الفصل الرابع عشر من كتاب الأحياء للمرحلة الثانوية/الفرع العلمي (النحو الثاني) الذي يبحث في مفاهيم البناية الضوئية التي يتداخلها هذا الفصل، من قبل الباحث ومشرف تركيب وثلاثة معلمين للأحياء يحملون درجة البكالوريوس في الأحياء ودرجة الماجستير في أساليب تدريس العلوم.
2 - روجعت أدبيات البحث ذات الصلة وبخاصة دراسة أمير وتمير (Griffard & Wandersee, 2001)، ودراسة جريفورد وودنرسي (1994)، ودراسة كاب ويلدرم وازودين (2001)، (Cap, Yildrim & Ozden، 2011)، ودراسة عوزي وعوتوس (2003)،

3 - صيغت (14) فقرة اختبارية تكشف عن فهم الطلبة لمفاهيم البناء الضوئي التي تم تحديدها.

4 - عرض الاختبار على هيئة تحكيم مكونة من ثلاثة من أعضاء هيئة التدريس في الجامعة الأردنية وجامعة اليرموك، ومن عضو هيئة تدريس من قسم العلوم الحياتية في جامعة آل البيت، ومن مشرفين للأحياء ومعلمي أحياء في مديريات التربية والتعليم في المفرق وجرش، وذلك للتأكد من ملاءمة وشمولية فقرات الاختبار لقياس فهم مفاهيم الأحياء التي تم تحديدها.

5 - حدد المستوى المقبول تربوي لأداء الطالب على اختبار المعرفة المفاهيمية بموضوع البناء الضوئي، وطلب من كل عضو هيكل هيئة التحكيم أن يحدد الدرجة المقبولة للطالب على الاختبار، ثم حسب المتوسط الحسابي للدرجات التي اعتبرها المحكمون فاصلاً بين المستوى المقبول وغير المقبول تربويًا، وبلغ هذا المستوى (0.6) آي (9.8) درجة.

6 - تضمن الاختبار صورته النهائية التي اتفق عليها أعضاء لجنة التحكيم وعددها (14). أما نوع الاختبار فقد كان من نوع الاختبار من متعدد حيث يختار الطالب جوابًا من أربعة بدلًا، ويختار سببًا من أربعة بدائل أيضًا، ولكي يكون الجواب صحيحًا يجب أن يختار الطالب الجواب الصحيح والسبب الصحيح. ويعطى الطالب درجة واحدة على الجواب الصحيح أو صنفًا على الجواب الخاطئ، وهكذا، تقل فرص تخميش الإجابة ويزيد صدق الاختبار وتنتائج الدراسة وتعميماتها (الملحق رقم 2).
صدق الاختبار وثباته:

تم التحقق من صدق الاختبار بدلاً من صدق المحتوى، حيث تم عرضه على هيئة التحكم المذكورة سابقاً، وطلب من لجنة التحكيم إبداء رأيها في مدى ملاءمة الفقرات وشموليتها لقياس المعرفة المفاهيمية لمفاهيم الأحياء التي تم تحديدها.

ولتحديد ثبات الاختبار، تم تطبيقه على عينة من (600 طالب) من مجتمع الدراسة حيث تم إيجاد ثبات الاختبار بطريقة إعادة الاختبار حيث كان معامل الثبات المحسوب بهذه الطريقة (0.81).

إجراءات الدراسة

- أخذ الموافقة الرسمية من قبل وزارة التربية والتعليم لتطبيق أدوات الدراسة على مديرية التربية والتعليم لقصبة المفرق التي تشكل مجتمع الدراسة وعينته.

اختبرت عينة البحث من مجتمع الدراسة.

- طبقت أدوات الدراسة على عينة البحث، وتم توضيح أهداف الدراسة وطرق الإجابة على الأدوات.

- التأكد من إجابة المفصولين على جميع أدوات الدراسة.

- ترتيب البيانات التي تم جمعها وتبويها، وحسب تصميم الدراسة المحدد، التصميم العلامي الثاني (2×2). وأجريت عليها التحليلات الإحصائية الوصفي والاستدلالية باستخدام نظام SPSS.

التصميم والمعالجة الإحصائية

تضمنت الدراسة متغيرين مستقلين ومتغيراً تابعاً واحداً. وكان المتغيران المستقلان هما:
1 - التفكير الشكلي، وله مستويان: مجرد، ويضم الطلاب الذين حصلوا على درجة (4) فأكثر على اختبار التفكير المنطقي، ومحسوس، يضم الطلاب الذين حصلوا على درجة (أقل من أربع) على اختبار التفكير المنطقي.

2 - الاتجاه نحو الأحياء، وله مستويان: إيجابي ويضم الطلاب الذين حصلوا على درجة أكثر من (114) على مقياس الاتجاهات نحو الأحياء، وسلبي يضم الطلاب الذين حصلوا على درجة (114) فأقل على مقياس الاتجاهات نحو الأحياء.

أما المتغير التابع فيتمثل في مستوى المعرفة المفاهيمية بمناهج موضوع البناء الضوئي. وتمت المعالجة الإحصائية وفق الخطوات التالية:

- تصحيح استجابات الطلاب على الأدوات وتحويلها إلى درجات خام.
- استخدمت مبادئ وأساسيات الإحصاء الوصفي لحساب المتوسطات الحسابية والانحرافات المعيارية ونسبة شيوط الفهم السليم لأداء الأفراد في عينة الدراسة على اختبار المعرفة المفاهيمية بموضوع البناء الضوئي.

ولاختبار فرضية الدراسة الأولى: تم استخدام اختبار (ت)، وللاختبار فرضيات الدراسة الصفرية الثلاث: الثانية والثالثة والرابعة والخليفة إلى بيات عن الفروق قد تعزى إلى متغيري: التفكير الشكلي (مجرد، محسوس) والاتجاه نحو الأحياء (إيجابي، سلبي) والاثر المشترك للتفاعل بينهما، تم استخدام تحليل التباين ذي التصميم العامل (2×2).

نتائج الدراسة

أولاً - النتائج المتعلقة بالفرضية الأولى:

نصت هذه الفرضية على أن مستوى المعرفة المفاهيمية بالبناء الضوئي لدى طلاب الصف الأول الثانوي العلمي لا يختلف بدلالة إحصائية عن المستوى المقبول تربوياً الذي يساوي (9.8) درجة على اختبار المعرفة المفاهيمية.
وبين الجدول رقم (3) ملخص الإحصاءات الوصفية المتمثلة في المتوسطات الحسابية والانحرافات المعيارية ونسبة شيوع الإجابات الصحيحة (فهم السليم) لكل فقرة من فقرات اختبار المعرفة المفاهيمية بالبناء الضوئي في الأحياء لدى طلاب الصف الأول الثانوي العلمي.

جدول رقم (3)

المتوسطات الحسابية والانحرافات المعيارية ونسبة شيوع الفهم السليم (%)

<table>
<thead>
<tr>
<th>رقم الفقرة</th>
<th>نسبة شيوع الفهم السليم (%)</th>
<th>الانحراف المعياري</th>
<th>المتوسط الحسابي</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>0.18</td>
<td>0.15</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>0.52</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>6</td>
<td>0.51</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>7</td>
<td>0.53</td>
<td>0.31</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>0.37</td>
<td>0.35</td>
<td>0.70</td>
</tr>
<tr>
<td>9</td>
<td>0.28</td>
<td>0.28</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>0.28</td>
<td>0.49</td>
<td>0.50</td>
</tr>
<tr>
<td>11</td>
<td>0.52</td>
<td>0.15</td>
<td>0.50</td>
</tr>
<tr>
<td>12</td>
<td>0.52</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>13</td>
<td>0.52</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>14</td>
<td>0.52</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>15</td>
<td>0.52</td>
<td>0.46</td>
<td>0.50</td>
</tr>
<tr>
<td>16</td>
<td>0.52</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>17</td>
<td>0.52</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>18</td>
<td>0.52</td>
<td>0.18</td>
<td>0.18</td>
</tr>
</tbody>
</table>

بلاحظ من الجدول رقم (3) أن نسبة شيوع الفهم السليم منخفضة إلى جهه عام، فقد بلغ عدد الفقرات التي حصلت على نسبة شيوع الفهم السليم المتوسط العام 2.82 %.

المجلد الحادي والعشرون
لمضمونها (50%) فاكثر ثلاث فقرات، وهي تلك الفقرات المتعلقة بنواتج حلقة كالفن، وجري الكورونت السمي مرتك حضوري، ونواتج التفاعلات الضوئية.
وأذا يعني أن طلاب الصف الأول الثانوي العلمي لا يملكون الفهم العلمي السليم لمفاهيم البناء الضوئي.

والوصول إلى بيانات وصفية لمستوى المعرفة المفاهيمية بالبناء الضوئي لـ الأحياء عند طلاب الصف الأول الثانوي العلمي، تم تقسيم المعرفة المفاهيمية بالبناء الضوئي لـ الأحياء اعتبارا إلى ثلاث مستويات:
1 - معرفة مفاهيمية مقبولة (50% فما فوق)
2 - معرفة مفاهيمية متدنية (25% - 49%)
3 - معرفة متدنية جدا (أقل من 25%)

يتضح من الجدول رقم (2) أن عدد الفقرات التي تراوحت نسبة شيوغ الفهم السليم لمضمونها بين (25% - 49%) ثلاث فقرات (11.12.13). وتتعلق هذه الفقرات بما يلي:
- تحتوي اللحمه لـ البلاستيدية الخضراء على جزيئات DNA. وروابيبسومات RNA. نسبة شيوغ الفهم السليم (40%), فقرة (11).
- يستخدم الناتجان من التفاعلات الضوئية لـ تحويل PGA الى ATP و NADPH (31%), فقرة (12).
- يحتوي النظام الضوئي على أصباغ مساعدة ومركز التفاعل، وبعض العوامل الناقلة للإلكترونات (43%), فقرة (14).

وهذا يشير إلى أن طلاب الصف الأول الثانوي العلمي يمتلكون معرفة مفاهيمية متدنية لضمون ثلاث فقرات من فقرات المعرفة المفاهيمية بالبناء الضوئي. ويعد ذلك إلى قصور فهم الطلاب لفهوم اللجنة لـ البلاستيدية الخضراء، ومفهوم النظام الضوئي، وأليات التفاعلات الضوئية.

كما ينصح من الجدول رقم (3) أن عدد الفقرات التي بلغت نسبة شيوغ الفهم السليم لمضمونها أقل من 25% ثمانية فقرات (12.8.7.6.4.3.2.1). وتتعلق هذه الفقرات بما يلي:
تحلل الماء إلى هيدروجين وأكسجين في التفاعلات الضوئية من البناء الضوئي 15%.

- الخلايا النباتية التي تخلو من البلاستيدات الخضراء لا يمكنها أن تطلق الأكسجين (18%), فقرة (2).

- يعد غليسرالدهيد أحادي الفوسفات المركب العضوي الأول الناتج من عملية البناء الضوئي (14%), فقرة (3).

- تسلسل تدفق الإلكترونات في عملية البناء الضوئي (16%), فقرة (4).

- يتعاون النظام الضوئي الأول والنظام الضوئي الثاني في احترال جزيئات NADP+ (8%), فقرة (5).

- عدد جزيئات O2 التي يتم إطلاقها مقابل تثبيت عدد من جزيئات CO2 في البناء الضوئي (18%), فقرة (6).

- حدوث حلقة كالفن (18%), فقرة (7).

- المستقبل النهائي للالكترنات في التفاعلات الضوئية اللاحقة (18%), فقرة (8).

وهذا يعني أن طلاب الصف الأول الثانوي العلمي يتملكون معرفة علمية مفاهيمية متدنية جداً ببعض الفترات المزار إليها بالأرقام (12.8، 7.6، 5.4، 3.2، 1.1). ويعود ذلك إلى قصور فهم الطلاب للفهم حلقة كالفن، وتسلسل تدفق الإلكترونات في عملية البناء الضوئي، و التكامل بين النظم الضوئية الأول والثاني.

هذا، يتم حساب المتوسط الحسابي والانحراف المعياري لدرجات طلاب الصف الأول الثانوي العلمي على اختبار المعرفة المفاهيمية بالبناء الضوئي. كما تم حساب المستوى المتوقع تربيوي بناءً على آراء المحكمين الذي يساوي (9.8) كما هو مبين في الجدول رقم (4).
جدول رقم (4)

نتائج اختبار (ت) لاختبار دلالة الفرق بين مستوى المعرفة المفاهيمية لدى طلاب الصف الأول الثانوي العلمي والمستوى المقبول تربويًا (يساوي 9.8 درجة)

<table>
<thead>
<tr>
<th>قيمة "ت"</th>
<th>الانحراف المعياري</th>
<th>المتوسط الحسابي</th>
<th>عدد أفراد العينة</th>
<th>البيانات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>2.22</td>
<td>3.8</td>
<td>130</td>
<td>مستوى المعرفة المفاهيمية لدى طلاب الصف الأول الثانوي العلمي</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.8</td>
<td></td>
<td>المستوى المقبول تربويًا (70٪)</td>
</tr>
</tbody>
</table>

بلاحظ من الجدول رقم (4) أن متوسط المعرفة المفاهيمية بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي يساوي 9.8 درجة، وانحراف معياري يساوي (2.22) درجة أي بنسبة مئوية قدرها (14.27٪). وعند مقارنة مستوى المعرفة المفاهيمية بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي بالمستوى المقبول تربويًا (أي 9.8 درجة)، تبين أن قيمة متوسط أداء طلاب الصف الأول الثانوي العلمي على اختبار المعرفة المفاهيمية بالبناء الضوئي متدنية عند طلاب الصف الأول الثانوي العلمي.

ولاختبار فرضية الدراسة الأولى، تم تطبيق اختبار (ت) لعينة واحدة ثم اختبار دلالة الفرق عند مستوى الدراسة (α = 0.05). ويتين من الجدول رقم (4) أن مستوى المعرفة المفاهيمية بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي يقل عن المستوى المقبول تربويًا (9.8 درجة) بفرق قدره (6.86٪). وقد كان هذا الفرق دالاً إحصائياً عند مستوى الدراسة (α = 0.05) وقيمة "ت" الحرة (1.75). وعليه، ترفض الفرضية الصفرية الأولى؛ أي أن طلاب الصف الأول الثانوي العلمي يمتلكون معرفة مفاهيمية بالبناء الضوئي تقل بفرق ذي دلالة إحصائية عن المستوى المقبول تربويًا (9.8 درجة).
ثانياً - النتائج المتعلقة بالفرضيات الثانية والثالثة والرابعة:
لاختبار هذه الفرضيات تم استخدام تحليل التباين الشأني ذي التصميم العاملي (2×2) لدراسة أثر كل من المتغيرات المستقلة في المتغير التابع. وقد كان المتغير التابع في هذا التحليل هو مستوى المعرفة المفاهيمية بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي، أما المتغيران المستقلان فهما التفكير الشكلي بمستويه: المجرد، والمحسوس، ومتغير الاتجاهات نحو الأحياء بمستويه: إيجابي، وسلاطي.

وفيما يلي عرض نتائج الدراسة المتعلقة بالفرضيات الثلاث: ويبين الجدول رقم (5) المتوسطات الحسابية والانحرافات العcriptive لأفراد عينة الدراسة حسب متغيري التفكير الشكلي والاتجاهات نحو الأحياء.

جدول رقم (5)
المتوسطات الحسابية والانحرافات العcriptive لأفراد عينة الدراسة على اختبار المعرفة المفاهيمية بالبناء الضوئي وفق متغيري التفكير الشكلي والاتجاهات نحو الأحياء

<table>
<thead>
<tr>
<th>المجموع</th>
<th>التفكير الشكلي</th>
<th>البيانات الإحصائية</th>
<th>الاتجاهات نحو الأحياء</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مجرد</td>
<td>محسوس</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,53</td>
<td>3,46</td>
<td>0,5</td>
<td>إيجابي</td>
</tr>
<tr>
<td>2,04</td>
<td>1,86</td>
<td>1,79</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>0,46</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>2,48</td>
<td>2,02</td>
<td>3,08</td>
<td>إيجابي</td>
</tr>
<tr>
<td>2,02</td>
<td>1,79</td>
<td>2,39</td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td>0,3</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>3,8</td>
<td>2,89</td>
<td>0,7</td>
<td>إيجابي</td>
</tr>
<tr>
<td>2,33</td>
<td>1,92</td>
<td>2,31</td>
<td></td>
</tr>
<tr>
<td>0,38</td>
<td>0,53</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>76</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

بلاحظ من الجدول رقم (5) تفوق الطلاب ذوي التفكير المجرد على المجلد الحادي والعشرون
أقرانهم الطلاب ذوي التفكير المحسوس يُقدّر الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي يُقدّر الأحياء. حيث يلاحظ من الجدول رقم (5) أن متوسط درجات الطلاب ذوي التفكير المجرد قد بلغ (5.07) درجة. يُقدّر حين بلغ متوسط درجات الطلاب ذوي التفكير المحسوس (2.89) درجة. وكذلك يظهر من الجدول تفوق الطلاب ذوي الاتجاهات الإيجابية نحو الأحياء على أقرانهم الطلاب ذوي الاتجاهات السلبية نحو الأحياء يُقدّر الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي. حيث يلاحظ من الجدول رقم (5) أن متوسط درجات الطلاب ذوي التفكير المجرد والاتجاهات الإيجابية نحو الأحياء قد بلغ (5.5) درجة. يُقدّر حين بلغ متوسط درجات الطلاب ذوي التفكير المجرد والاتجاهات السلبية نحو الأحياء (5.58) درجة. كذلك يظهر من الجدول رقم (5) تفوق الطلاب ذوي التفكير المحسوس والاتجاهات الإيجابية نحو الأحياء على أقرانهم الطلاب ذوي التفكير المحسوس والاتجاهات السلبية نحو الأحياء يُقدّر الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي. حيث يلاحظ من الجدول رقم (5) أن متوسط درجات الطلاب ذوي التفكير الـمحسوس والاتجاهات الإيجابية نحو الأحياء قد بلغ (6.45) درجة. يُقدّر حين بلغ متوسط درجات الطلاب ذوي التفكير المحسوس والاتجاهات السلبية نحو الأحياء (7.20) درجة.

كما يلاحظ من الجدول رقم (5) تفوق الطلاب ذوي التفكير المجرد والاتجاهات الإيجابية نحو الأحياء على أقرانهم الطلاب ذوي التفكير المجرد والاتجاهات السلبية نحو الأحياء يُقدّر الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي. حيث يلاحظ من الجدول رقم (5) أن متوسط درجات الطلاب ذوي التفكير المجرد والاتجاهات الإيجابية نحو الأحياء قد بلغ (6.52) درجة. يُقدّر حين بلغ متوسط درجات الطلاب ذوي التفكير المحسوس والاتجاهات السلبية نحو الأحياء (7.03) درجة.

ولاختبار دلالة هذه الفروق تم استخدام تحليل التباين الثنائي Two Way وبيان الجدول رقم (6) خلاصة نتائج تحليل التباين الثنائي المذكور ANOVA.
تُشير نتائج تحليل التباين الجديد (2) إلى مستوى المعرفة المفاهيمية بالبناء الضوئي الناتج الأحياء عند طلاب الصف الأول الثانوي العلمي وفقاً لمتغيري التفكير الشكلي والاتجاهات نحو الأحياء.

<table>
<thead>
<tr>
<th>مستوى الدلالة</th>
<th>قيمة الإحصائي (F)</th>
<th>درجات المربعات الحرية</th>
<th>مجموع المربعات</th>
<th>مصدر التباين</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0007</td>
<td>79.65</td>
<td>79.650</td>
<td>التفكير الشكلي</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>68.764</td>
<td>68.764</td>
<td>الاتجاهات نحو الأحياء</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>1.051</td>
<td>1.051</td>
<td>التفاعل</td>
</tr>
<tr>
<td></td>
<td></td>
<td>417.895</td>
<td>417.895</td>
<td>الخطا</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129</td>
<td>129</td>
<td>الكلي</td>
</tr>
</tbody>
</table>

جدول رقم (٦)

تُشير نتائج تحليل التباين الواردة في الجدول رقم (٦) إلى وجود دلالة إحصائية (١٠٠٠٠) لقيمة_(١٠٠٠٠) المتعلقة بتأثير التفكير الشكلي في الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي؛ وبالرجوع إلى جدول رقم (٥) يتضح تفوق الطلاب ذوي التفكير المجرد على الطلاب ذوي التفكير المحسوس في أدائهم على اختبار المعرفة المفاهيمية بالبناء الضوئي، إذ بلغ متوسط درجات ذوي التفكير المجرد (٠.٠٢٨) درجة، بينما بلغ متوسط درجات الطلاب ذوي التفكير المحسوس (٠.١٠٨) درجة. وهذا يشير إلى أن متوسط أداء الطلاب ذوي التفكير المجرد على اختبار المعرفة المفاهيمية بالبناء الضوئي أعلى من متوسط أداء الطلاب ذوي التفكير المحسوس بمقدار (٠.١٠٨) درجة أي بنسبة قدرا (١٥.٦٪). ومن هنا ترفض الفرضية الصفرية الثانية، وبالتالي فإن مستوى المعرفة المفاهيمية بالبناء الضوئي يختلف لدى طلاب الصف الأول الثانوي العلمي باختلاف مستوى تفكيرهم الشكلي لصالح ذوي التفكير المجرد. كذلك تشير نتائج تحليل التباين الباردة في الجدول رقم (٦) إلى وجود
هلية إحصائية ($\alpha = 0.05$) لقيمة "ف" ($\chi^2 = 38.73$). علية اختبار الاحواجات
 نحو الأحياء بـ اختبار الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي،
 وبالرغم إلى جدول المتوسطات رقم (5) يلاحظ تفوق الطلاب ذوي الاحواجات
 الإيجابية نحو الأحياء على الطلاب ذوي الاحواجات السلبية نحو الأحياء بـ
 الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي، حيث بلغ المتوسط درجات
 الطلاب ذوي الاحواجات الإيجابية نحو الأحياء (4.04) درجة. بينما بلغ
 المتوسط درجات الطلاب ذوي الاحواجات السلبية نحو الأحياء (2.48) درجة.
 وهذا يشير إلى أن متوسط أداء الطلاب ذوي الاحواجات الإيجابية نحو الأحياء
 أعلى من متوسط أداء الطلاب ذوي الاحواجات السلبية بمقدار (1.95) درجة.
 أي بنسبة قدرها (12.92%). وهذا يعني أن مستوى المعرفة المفاهيمية بالبناء
 الضوئي عند طلاب الصف الأول الثانوي العلمي يختلف باختلاف مستوى
 احواجاتهم نحو الأحياء لصالح ذوي الاحواجات الإيجابية نحو الأحياء، وعلى
 ترفض الفرضية الصفرية الثالثة.

ويتبين من نتائج تحليل التباين الثنائي الواردة بـ الجدول رقم (6) عدم
 وجود دلالة إحصائية ($\alpha = 0.05$) لقيمة "ف" ($\chi^2 = 45.63$) المتعلقة بـ التفاعل
 بين التفكير الشكلي والاحواجات نحو الأحياء بـ تباين الأداء على اختبار المعرفة
 المفاهيمية بالبناء الضوئي، والرسم البياني بـ الشكل رقم (1) يوضح عدم
 وجود تفاعل لأثر مستوى التفكير الشكلي والاحواجات نحو الأحياء بـ تباين
 الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي، بالرغم من تفوق الطلاب
 الصفي الأول الثانوي ذوي التفكير المجرد والاحواجات الإيجابية نحو الأحياء بـ
 الأداء على اختبار المعرفة المفاهيمية بالبناء الضوئي على أقرانهم الطلاب ذوي
 التفكير المجرد والاحواجات السلبية نحو الأحياء، وتفوق الطلاب ذوي التفكير
 المحسوس والاحواجات الإيجابية نحو الأحياء على أقرانهم الطلاب ذوي التفكير
 المحسوس والاحواجات السلبية نحو الأحياء. وهذه النتيجة تعني قبول الفرضية
 الصفرية الرابعة.
الشكل رقم (1)
التمثيل البياني للمتولدات الحسابية لأداء أفراد العينة على اختبار المعرفة المفاهيمية
بالبناء الضوئي. لتوضيح عدم وجود تفاعل بين مستوى التفكير الشكلي والاتجاهات
 نحو الأحياء

مناقشة النتائج والتوصيات

أوضحت البيانات الوصفية لنتائج الدراسة أن مستوى المعرفة المفاهيمية
بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي متدين بوجه عام: حيث
لوحظ أن مستوى المعرفة المفاهيمية فيما يتعلق بالفترات (10.91) كان مقبولا
اعتبارياً: أي أن نسبة شيوخ الفهم السليم فيما يتصل بمضمات هذه الفترات
(50٪) فاكثر.

وأوضح النتائج أن مستوى المعرفة المفاهيمية لطلاب الصف الأول
الثاني العلمي كان متدينًا فيما يتصل بمضمات الفترات المشار إليها بالأرقام
(12.14). وهذا يشير إلى عدم تمكن الطلاب من تطوير فهم سليم فيما
يتصل بالمفاهيم التي تناولتها هذه الفترات. كما أوضح النتائج أن مستوى
المعرفة المفاهيمية لطلاب الصف الأول الثانوي العلمي فيما يتصل بمضمات
الفترات المشار إليها بالأرقام (12.8.7.0.5.2.1) كان متدينًا جدًا. وهذا يشير
إلى أن تعلم طلاب الصف الأول الثانوي العلمي ليس ذا معنى بالنسبة لهم.
ويمكن تفسير هذه النتائج وإرجاعها إلى جملة من العوامل من أبرزها ما يلي:

تعد معظم مفاهيم البناء الضوئي ذات طبيعة ترابطية، أي تربط بين عدة مجالات دراسية كالفيزياء، والكيمياء، والأحياء، ويطلب فهم هذه المفاهيم (التفاعلات الضوئية، والتفاعلات غير الضوئية) فهم وتطبيق المعرفة الفيزيائية والكيميائية مع المعرفة البينية الأحياء على حد سواء. أي أن فهم مثل هذه المفاهيم يتطلب المزيد من إعادة بناء البنية المفاهيمية.

هذا، ولا يعطي كثير من المعلمين ومؤلفي كتب العلوم الاهتمام الكافي للعلاقات بين المفاهيم، ولا يصرفون الكثير من الوقت في تشخيص المفاهيم البديلة ومعالجتها لدى الطلبة. ويتطلب التركيز في البناء الضوئي على الموضوعات التي تتطلب القليل من إعادة البنية المفاهيمية. وتنطبق نتائج هذه الدراسة مع نتائج العديد من الدراسات (Amir & Tamir, 1994; Waheed & Lucas, 1992; Hazel & Prosser, 1994; Mikkial, 2001; Cap, Yildrim & Ozden, 2001; Ozay & Oztas, 2003).

وأشارت النتائج التي تم التوصل إليها بعد تطبيق إجراءات الدراسة، واستخدام المعالجات الإحصائية المناسبة، أن مستوى المعرفة المفاهيمية بالبناء الضوئي يقل عن مستوى المقبول تربويًا بفرق قدره (6) درجات، وكان هذا الفرق دالًا إحصائيًا عند مستوى الدلالات (0.00); وهذا يعني رفض الفرضية الصفرية الأولى. وبالتالي فإن مستوى المعرفة المفاهيمية بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي متدنية بشكل عام.

ويمكن أن يرجع هذا المستوى المتدني في المعرفة المفاهيمية بالبناء الضوئي عند طلاب الصف الأول الثانوي العلمي لعدم من العوامل النفسية والفنية (غرفة الصف) التي يتعرض لها الطلاب. ومن هذه العوامل أسلوب الكتاب المدرسي المقرر في تقديم المادة العلمية؛ حيث تقدم الكتب المعرفة العلمية على فرض أن المتعلم يمكن أن تكون أبنية مفاهيمية سليمة ذات علاقة بالمفاهيم المراة تعليمها، على عكس النظرية البينية في تصميم المناهج التي تأخذ بالاعتبار المفاهيم البديلة الموجودة في الأبينية المعرفية (Millar & Driver, 1987).
كما أن أحد هذه العوامل يمثل في تصور الفرد لطبيعة العلم، التي تعكس على تعلم الفرد وعلى أساليب التدريس المتعلقة بتعليم الأفراد المفاهيم العلمية؛ فالعلم ليس مجموعة من القوانين والحقائق، ولكنه إبداع العقل البشري الذي يبدع الأفكار والمفاهيم بحرية. وهذا لا يتفق مع تدريس الأحياء التقليدي حيث يتم العلم بالوصف وحفظ التعريفات. كما أن الأنظمة التعليمية التي يتم توظيفها يتفصّل المفاهيم غير كافية؛ حيث لا تبرز الناقص بين المفهوم البديل الذي قد يتبناه الطالب والواقع الذي تقدمه التجربة كخبرة حسية، ومن ناحية أخرى، يرى بعض التدريسين قصور التعلم بالخبرة العلمية الحسية حيث لا يضمن هذا المنحى بناء الفرد للمفهوم العلمي السليم أيّ شيء. وقد مرور بالخبرة الحسية؛ فالنظرية النباتية تشير إلى أن تطوير الفرد لفهم علمي سليم لظاهرة معينة يحتاج إلى أكثر من الخبرات العملية، وتريد أن النماذج النظرية والمصطلحات العلمية لا يتم اكتشافها عن طريق العمل ولكن يجب تقديمها في سياق التعلم (Driver, 1994). ومن العوامل التي قد تؤثر في مستوى المعرفة المفاهيمية بالبناء الضوئي تصور الطلاب لمادة الأحياء كموضوع دراسي، حيث يعكس تصور الطلاب لمادة الأحياء على سلوكي التعليمي مما يؤثر في بنائه المعنى الذي يطوره فيما يتعلق بمفاهيم الأحياء بشكل عام.

وأظهرت نتائج تحليل التباين الثنائي (2×2) الواردة في الجدول رقم (6) أن تغير التفكير الشكلي أو رأيا إحصائياً. وقد يرجع إلى أهمية التفكير الشكلي في اكتساب المعرفة المفاهيمية للعلم، ذلك أن إلغاء المفاهيم البديلة التي يتم اكتسابها بالخبرة الحسية واكتساب مفاهيم علمية سليمة فيما يتصل بالظواهر البيولوجية يحتاجان إلى مهارات وعمليات عقلية. وهذه المهارات والعمليات العقلية هي نفسها مكونات التفكير الشكلي. ويُشير هذا السياق يشير لاروسون وثومبسون (Lawson & Thompson, 1988) إلى شروط إلغاء المفاهيم البديلة واكتساب الفهم العلمي السليم وهي:

- إدراك المفهوم العلمي السليم للظاهرة التي يتم دراستها.
- إدراك الدليل الذي يتم توظيفه لإثبات صحة المفهوم البديل.
- العقلي والعلاقات المنطقية بين الأدلة التجريبيّة من جهة والمفهوم البديل من جهة أخرى.

وعليه، لابد للطالب من إتقان مهارات وعمليات التفكير الشكلي حتى يكتسب المفاهيم العلمية السليمة ويمثلها بحيث يصبح التعليم ذا معنى بالنسبة للطالب الأمر الذي يساعد في تطبيق بنائه المعرفي في المواقف الجديدة. وتتفق نتيجة هذه الدراسة فيما يتعلق بأثر التفكير الشكلي في هنم الطلبة للمفاهيم العلمية مع كثر من الدراسات (Ehindore, 1979; Hewson & Hewson, 1993; Lawson & Thompson, 1988; Cavallo, 1996; Johnson & Lawson, 1998; Tekkaya, 2003)

وبينت نتائج تحليل الربابين الثانيي (2×2) في الجدول رقم (1) أنه يوجد أثر ذو دلالة إحصائيّة لتغيير الاتجاهات نحو الأحياء. وهذا يعني أن أتجاه الطالب نحو الأحياء يؤثر في مستوى معرفته المفاهيمية بالبناء الضوئي نحو الأحياء؛ فكلما ازداد الاتجاه الإيجابي نحو الأحياء، زاد تقبل الطالب لمادة الأحياء؛ الأمر الذي يوفر للطالب دافعية لدراسة هذه المادة وتوظيف قدراته العقلية لتمثل مفاهيمها والعمل على تطبيقها في مواقف جديدة.

وبالنسبة للتفاعل بين التفكير الشكلي والاتجاهات نحو الأحياء فقد تبين عدم وجود أثر دال إحصائيًا. وتم تفسير ذلك من خلال الرسم البياني (الشكل رقم 1) الذي بيبين أن مستوى المعرفة المفاهيمية بالبناء الضوئي عند الطلاب ذوي الاتجاهات الإيجابية نحو الأحياء من الطلاب ذوي التفكير المجرد والتفكير المحسن أعلى منه عند الطلاب ذوي الاتجاهات السلبية نحو الأحياء من الطلاب ذوي التفكير المجرد والتفكير المحسن، وهذه النتيجة متوقعة، ويمكن تفسيرها على أساس أن الطلاب ذوي الاتجاهات الإيجابية يتمثلون دافعية لدراسة المفاهيم الإيجابية على عكس الطلاب ذوي الاتجاهات السلبية نحو الأحياء الأمر الذي يقلل رغبتهم وبالتالي دافعيتهم لدراسة المفاهيم الإيجابية وتمثلها.
الوصيات

في ضوء نتائج الدراسة واستنتاجاتها، يمكن تقديم الاقتراحات والتوصيات التربوية العلمية التالية:

1 - الاهتمام بالمفاهيم العلمية التي يكونها الطلبة فيما يتصل بالبناء الضوئي والعمل على تطوير البنية المفاهيمية التي يكونها الطلبة بحيث تتفق مع المفاهيم العلمية القبلية لدى العلماء، وذلك من خلال التعرف إلى أنماط الفهم البديل وتعظيم موضوعات العلم التي تتناولها كتب العلوم.

2 - إدخال برامج تعليم التفكير وبخاصة التفكير الشكلي وذلك لإكافسة الطلبة مهارات التفكير لتمكينهم من اكتساب الأبنية المفاهيمية السليمة والتعامل مع مشكلات الحياة اليومية.

3 - تدريب المعلمين على استخدام استراتيجيات التغيير المفاهيمي لتمكينهم من تنفيذ التدريس باستراتيجيات التغيير المفاهيمي.

4 - تطوير أساليب التقويم بحيث لا تقتصر على اختبارات التحصيل التقليدية التي تركز على جزيئات المعرفة العلمية، وإنما تشمل الخرائط المفاهيمية والمناقشات السارة، الأمر الذي يساعد على فهم البنية المفاهيمية التي يكونها المتعلم فيما يتصل بظاهرة علمية معينة.

5 - تبني النظرة البنائية للتعلم من قبل مخططي المناهج وموثقينها، بحيث يتم الأخذ بعين الاعتبار المفاهيم البديلة التي تنافس الفهم العلمي السليم، وتوفر الفرصة للمتعلم للاختبار النماذج النظرية واكتشاف العلاقة بين كل نموذج والأدلة التجريبية التي تؤيده أو ترفضه، وهذا يساعد المتعلم على بناء المفاهيم العلمي ذاتيا وليس حفظه واستذكاره دون معيار.

6 - إجراء دراسات لاكتشاف العلاقة بين مستوى المعرفة المفاهيمية بفهائم الأحياء وعوامل أخرى مثل مستوى فهم المتعلم لطبيعة العلم، ومستوى المرونة العقلية، ونظرة المتعلم إلى المعرفة العلمية، وذلك بهدف تحديد معظم العوامل التي تؤثر في اكتساب المعرفة المفاهيمية بفهائم الأحياء.
The Relationship Between the First Scientific Secondary Graders’ Formal Thinking and their Attitudes Towards Biology and their Conceptual Knowledge of Photosynthesis

Dr. Salem A. Alkhawaldeh
Dept. of Curricula and Instructions - Faculty of Educational Sciences
Al AlBayt University - Mafraq - Jordan

Abstract

The purpose of this study was to identify the first secondary graders’ conceptual knowledge of photosynthesis and investigate the relationship between their formal thinking and attitudes towards Biology and their conceptual knowledge of photosynthesis through answering the following four questions:
1 - What is the level of the conceptual knowledge of photosynthesis of first secondary graders? Does this level differ from the educational accepted level (9.8) degree?
2 - Does the conceptual knowledge’s level vary because of formal thinking?
3 - Does the conceptual knowledge’s level vary because of attitude towards Biology?
4 - Is there an effect in the level of conceptual knowledge of photosynthesis attributed to the interaction of the formal thinking and attitudes towards Biology?

In order to answer these questions and to test the four hypotheses, a sample of (130) students was sampled from (269) males in the first secondary graders. They form about (48.33%) of the population. Three instruments were used in the study: Logical Thinking Test, Attitudes towards Biology Scale and the Conceptual Knowledge of Photosynthesis Test.

T-test and 2×2 analysis of variance were used to test the hypotheses of the study.

The results of this study showed that:
- The conceptual knowledge’s level of photosynthesis among first secondary
graders was (3.80) degrees and its percentage was (27.14%) which is less than the educational accepted level (9.8) degrees at difference of (6) degrees; the difference is statistically significant.

- There is a significant difference between the means of the conceptual knowledge’s level attributed to formal thinking; it was (5.07) degrees among the formal thinking and (2.89) degrees among the concrete thinkers.

- There is a significant difference between the means of the conceptual knowledge’s level attributed to attitudes towards Biology; it was (4.43) degrees among students of positive attitudes and (2.48) degrees among students of negative attitudes towards Biology.

- There is no significant effect for common interaction between formal thinking and attitudes towards Biology upon the conceptual knowledge’s level of photosynthesis among first secondary graders.

Several recommendations were suggested upon the results of the study.
المراجع

21 - Ehindore, O.J. (1979). Formal Operational Precocity and Achievement

الملحق رقم (1)
مقياس الاتجاهات نحو مادة الأحياء

عزيزي الطالب/عزيزتي الطالبة:
تحية طيبة وبعد،
بين يديك مقياس للاتجاهات نحو مادة الأحياء، يتكون من (28) فقرة، وهذه الفقرات لا تمثل بأي حال من الأحوال اختبارًا، كما وليس هناك إجابة صحيحة وأخرى خاطئة.

والمللب منك التعبير عن حقيقة مشاعرك نحو مادة الأحياء بحرية كاملة وصراحة تامة، من خلال وضع علامة (X) أمام الفقرة وتحت الاختيار الذي يناسبك مع موقفك ويعبر عن حقيقة مشاعرك.

ويؤكد الباحث بأن هذه الإجابات سوف تستخدم لأغراض البحث العلمي فقط، وستحاط بالسرية التامة.

شاكرين لكم حسن تعاونكم.
<table>
<thead>
<tr>
<th>أعراض بحدة</th>
<th>أعراض لا أدرى</th>
<th>أوافق بحدة</th>
<th>أوافق لا أدرى</th>
<th>الفقرة</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>لو وجدت فرصة للتغيب عن حصة الأحياء لفعت.</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>لو أن هناك تخصصات مختلفة ضمن القسم العلمي لاحترض التخصص الذي لا أدرس فيه مادة الأحياء.</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>لعلم الأحياء أهمية كبيرة وتؤثر مباشرة في مستقبل الإنسان.</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td>لا أطبق الاستماع إلى المناقشات التي تدور حول موضوعات مادة الأحياء.</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td>حبذ لزيادة وزارة التربية والتعليم من عدد حصص الأحياء الأسبوعية في المدارس.</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td>التحقت بالفرع العلمي لجبي مادة الأحياء.</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td>اتضاف من حضور الأحياء.</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td>سيتيفي أحيي إذا عملت بعد إكمال دراستي بإحدى المهن التي لها علاقة بعلم الأحياء.</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
<td>يلعب علم الأحياء دورا هاما وكبيرا في تقدم الحضارة البشرية.</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td>مادة الأحياء غير مشقة.</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td>حصص الأحياء من الحخصص المحبة لنفسي.</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
<td>أحب المهن التي لها علاقة بعلم الأحياء.</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
<td>ستكون المدرسة ممتة أكثر بدون حضور الأحياء.</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
<td>لا أعتقد أن الأشخاص الذين يتسمون بقدرات عقلية عالية سيتابعون دراستهم في التخصصات ذات العلاقة بمادة الأحياء.</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
<td></td>
<td>موضوعات مادة الأحياء تتميز بالجفاف.</td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
<td></td>
<td>عندما أكون في حصة الأحياء فإنني أتمنى أن لا تنتهي.</td>
</tr>
</tbody>
</table>

المجلد الحادي والعشرون

العدد 82 - مارس 2007

د. سالم الخواجة
<table>
<thead>
<tr>
<th>الاعراض</th>
<th>المقدمة</th>
<th>أواقظ</th>
<th>رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>أعراض بشدة</td>
<td>علم الأحياء مادة لا لزوم لتدريسها ضمن المناهج التي تدرسها</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>خصص الأحياء مملة</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أشعر بالمتنة عند استخدام الميكروسكوب داخل المختبر</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أفضل متابعة دراستي الجامعية في أي تخصص ما عدا التخصصات ذات العلاقة بعلم الأحياء</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>لعلم الأحياء تطبيقات واسعة في حياة الإنسان</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أظل ملتزما لحصة الأحياء بلهفة ويبقى</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ينبغي تكريم الأفراد الذين يتابعون دراستهم في التخصصات ذات العلاقة بعلم الأحياء</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>علم الأحياء مادة لا ضرورة لها في حياتنا العملية</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>تستهوني المعرفة العلمية عن جسم الإنسان ووظائف أعضائه</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أتمنى لو تحذف حصص الأحياء من الفرع العلمي</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أشعر بالمتنة عند استخدام المختبر في دراسة مادة الأحياء</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>لا أرغب في دراسة أي تخصص يجعلني صاحب مهنة تتعلق بعلم الأحياء</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أكره مادة الأحياء</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أحرص كثيرا على حضور حصص الأحياء</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>يمكن صرف المال الذي ينقف على مختبر الأحياء لبرامج تربوية أكثر فائدة</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>أرغب في أن أختص في الوراثة مستقبلا</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ينبغي أن يتقرر تدريس علم الأحياء على الأفراد الذين يرغبون في التخصص في مجالات علم الأحياء</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>رقم الفقرة</td>
<td>الفقرة</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>أرغب في قضاء أطول وقت ممكن في دراسة مادة الأحياء</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>أشعر بالارتباك عندما يتغيب معلم الأحياء</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>يساعدني استخدام المختبر في مادة الأحياء على التفكير العلمي</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>أتفضل عندما تصادف العطلة الرسمية في يوم هّا حصة أحياء</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>لو قدر لي أن أكون معلما فإني أتمنى أن أكون معلماً لمادة الأحياء</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
الملحق رقم (2)

اختبار التفكير المنطقي

التعليمات:

أخي الطالب / أختي الطالبة،

تحية طيبة وبعد.

يهدف هذا الاختبار إلى تحديد مستوى التفكير المنطقي عندك ويعتبر تبريرك للإجابة التي تختارها ذات قيمة للإجابة نفسها. وعلى مُجرِّب اتباع الخطوات التالية للإجابة عن أسئلة الاختبار:

1 - اقرأ السؤال بعمق.
2 - فكر مليا قبل أن تجيب.
3 - ضع الإجابة الصحيحة على ورقة الإجابة.
4 - اقرأ الأسباب المحتملة ل إجابتك.
5 - اختر بعمق السبب الذي يمثل فهمك للمشكلة.
6 - ضع الإجابة على ورقة الإجابة في المكان المناسب.
7 - إذا غيرت رأيك اشتبك الجواب القديم ثم أضيف الجواب الجديد.
8 - يُرجى عدم وضع أي علامة على ورقة الأسئلة.

أسئلة الاختبار:

1 - عصرت أربع برتقالات لصنع ست كاسات من العصير ما هي كمية العصير التي يمكن الحصول عليها من ست برتقالات؟ "افرض أن حجم كل البرتقالات متساوية".

أ - (٥) كاسات.
ب - (٧) كاسات.
ج - (٩) كاسات.
السماح:

1 - أن مقارنة عدد الكاسات مع عدد حبات البرتقال سوف يكون دائماً بنسبة 2:1.

2 - كم زاد عدد حبات البرتقال فإن الفرق سيكون أقل.

3 - الفرق بين العدد سيكون دائماً (2).

4 - عندما كان عدد حبات البرتقال (4) كان الفرق (2)، وإن أصبح عدد البرتقال (6) سيكون الفرق أكثر بمقدار (2).

5 - لا أفترض أن هناك طريقة يمكن التنبوء بها.

س: باستخدام نفس مسألة حبات البرتقال في السؤال الأول (السابق)، كم عدد حبات البرتقال الذي تحتاج إليه لصنع (15) كأساً من العصير؟

أ - (7) برتقالة.

ب - (9) برتقالات.

ج - (10) برتقالات.

د - (12) برتقالة.

ه - لا شيء مما ذكر.

السماح:

1 - أن مقارنة عدد حبات البرتقال مع عدد كاسات العصير سيكون دائماً بنسبة 2:1.

2 - سيكون عدد حبات البرتقال دائماً أقل من عدد كاسات العصير.

3 - سيكون هناك فرق بين الفرق بين حبات البرتقال والكاسات دائماً (2).

4 - سيكون عدد حبات البرتقال نصف عدد كاسات العصير.

5 - لا توجد طريقة للتنبؤ بعدد حبات البرتقال.
س٣: انظر إلى الشكل التالي:

بناءً على الشكل السابق، افرض أنك سوف تجري تجربة لتجد ما إذا كان تغيير طول اليندين سوف يغير فترة الزمن اللازمة لتارجحه. أي البندولات التي يمكن أن تستخدم في التجربة؟

أ - (1) و (4).
ب - (2) و (4).
ج - (1) و (3).
د - (2) و (5).
هـ - كل البندولات.

السبب:

١ - يجب أن يختبر أطول بندول مع أقصر بندول.
٢ - يجب أن يختبر كل بندول مع الآخر.
٣ - كلما زاد طول اليندين فإن عدد الأوزان سوف يقل.
٤ - يجب أن تتساوى أطوال اليندين ولكن يجب أن تكون الأوزان مختلفة.
٥ - يجب أن تختلف أطوال اليندين ولكن يجب أن تتساوي عدد الأوزان.

س٤: انظر إلى الشكل التالي:

افرض أنك سوف تجري تجربة لتجد فيما إذا تغيير الوزن في نهاية الخلط فإن ذلك سيغير من الزمن اللازم لتارجح اليندين ذهاباً وإياباً. أي البندولات التي يمكن أن تستخدم في التجربة؟
السياق:

1 - يجب أن يقارن أثقل وزن مع أقل وزن.

2 - يجب أن تستخدم جميع البنودات حتى يتم اختبار كل بنود مع الآخر.

3 - يجب أن يختلف عدد الأوزان ولكن يجب أن تكون أطوال البنود متساوية.

4 - كلما زاد عدد الأوزان يجب أن يقل طول البنود.

5 - يجب أن يكون عدد الأوزان متساوية، ولكن يجب أن تختلف أطوال البنود.

Sean استأنف صندوقًا يحتوي على ثلاث بذور كوسا وثلاث بذور فاصوليا. فما الاحتمال أن تكون بذرة الفاصوليا هي البذرة التي سيختارها من الصندوق؟

أ - (1) من (2)
ب - (1) من (3)
ج - (1) من (4)
د - (1) من (1)
هـ - (4) من (1)

السبب:
1 - نحتاج إلى أربعة احتياجات لأن (2) بذور كوسا قد تكون اختيرت على التوالي.
2 - يجب أن نختار بذرة فاصوليا واحدة من (6) بذور.
3 - نحتاج أن نختار واحدة من (7) بذور.
4 - نصف البذور عبارة عن بذور فاصوليا.
5 - بالإضافة إلى بذرة الفاصوليا، قد نختار (2) بذور كوسا من مجموع (6) بذور.

س: اشترى بستاني صندوقاً يحتوي على (21) بذرة ممزوجة:
- (2) أزهار حمراء قصيرة.
- (4) أزهار صفراء قصيرة.
- (5) أزهار برتقالية قصيرة.
- (6) أزهار حمراء طويلة.
- (2) أزهار صفراء طويلة.
- (2) أزهار برتقالية طويلة.

إذا زرعت بذرة واحدة فقط، فما احتمال أن تكون النبتة ذات أزهار حمراء.

أ - (1) من (2)
ب - (1) من (3)
ج - (1) من (7)
د - (1) من (21)
هـ - غير ذلك
السبب:

1 - يجب أن تختار بذرة واحدة من البذور الحمراء والصفراء والبرتقالية.

2 - الأزهار القصيرة و الأزهار الطويلة لونها أحمر.

3 - لا يهم إذا كان الاختيار نبته طويلة أو قصيرة. المهم بذرة واحدة حمراء سوف تختار من مجموع (7) بذور حمراء.

4 - يجب أن نختار بذرة واحدة من مجموع (21) بذرة.

5 - سبع (7) بذور من (21) بذرة سوف تعطيها أزهار حمراء.

س - توضح الفئران في الرسم طبيعة من الفئران التي تُحبها في جزء من حقل معين. من الرسم أدركنا، قرر إذا كان احتمالية امتلاك الفئران السمينة لذيل الأسود أكثر من الفئران الهزيلة.

أ - نعم، احتمالية امتلاك الفئران السمينة لذيل الأسود أكثر من امتلاك الفئران الهزيلة.

ب - لا، أن احتمالية امتلاك الفئران السمينة لذيل الأسود ليس أكثر من امتلاك الفئران الهزيلة.
السبب:
1. من الفئران السمينة لها ذيل أسود والفئران الهزيلة لها ذيل أبيض.
2. بعض الفئران السمينة لها ذيل أبيض وبعض الفئران الهزيلة لها ذيل أبيض.
3. (18) فأرا من (200) فأرا لهم ذيل أسود و (12) منهم ذيل أبيض.
4. لاحظ أن كل الفئران السمينة لها ذيل أسود وليس كل الفئران الهزيلة لها ذيل أبيض.
5. من الفئران التي لها ذيل أبيض هي فئران سمينة.

8. هل احتمالية امتلاك الأسماك السمينة للخطوط العريضة أكثر من السمك الهزيل؟
 a. نعم.
 b. لا.

السبب:
1. بعض السمك السمين له خطوط عريضة والبعض الآخر له خيوط دقيقة.
2. السمك السمين له خطوط عريضة.
3. من السمك لها خطوط عريضة و من السمك لها خطوط ضيقة.
4 - السمك السمين له خطوط واسعة ومن السمك الهزيل له خطوط واسعة.

5 - بعض السمك الذي له خطوط عريضة هزيل والبعض الآخر سمين.

نموذج إجابة اختبار التفكير المنطقي

<table>
<thead>
<tr>
<th>السبب</th>
<th>الإجابات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>أ ب ج د ه 1 2 3 4 5</td>
</tr>
<tr>
<td>الرقم</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
الملحق رقم (۳)

اختبار المعرفة المفاهيمية بالبناء الضوئي

التعليمات:

أخي الطالب،
تحية طيبة وبعد،

هذا الاختبار يهدف إلى تحديد مستوى معرفتك المفاهيمية بموضوع
البناء الضوئي ويعتبر تبريرك للإجابة التي تختارها قيمة للإجابة نفسها.
وعليه، يرجى إتباع الخطوات التالية للإجابة عن أسئلة الاختبار:

1 - اقرأ السؤال بعمق.
2 - فكر مليا قبل أن تجيب.
3 - ضع الإجابة الصحيحة على ورقة الإجابة.
4 - اقر الأسباب المحتملة لإجابتك.
5 - اختر بعمق السبب الذي يمثل فهمك للمشكلة.
6 - ضع الإجابة على ورقة الإجابة في المكان المناسب.
7 - إذا غيرت رأيك اكتب الجواب القديم ثم أضف الجواب الجديد.
8 - يرجى عدم وضع أي علامة على ورقة الأسئلة.

اسم الطالب:
المدرسة:
الشعبة:

"اختبار المعرفة المفاهيمية بالبناء الضوئي"

س ۱ - واحدة من التالية تتم فيها التفاعلات الضوئية من البناء الضوئي:
أ - تحلل الماء مطلق الأكسجين
ب - تحلل ثاني أكسيد الكربون مطلق الأكسجين
جـ - تكوين مركب الطاقة
د - تحلل الماء إلى هيدروجين وأكسجين

السبب:

1 - يستخدم الضوء لتحطم جزي الماء - إطلاق الإلكترونات والبروتونات وO2 - ADP إلى ATP.
2 - يستخدم الضوء في تحويل NADPH إلى NADP +.
3 - يستخدم الضوء في تحويل جزيء Co2 - إطلاق الأكسجين.
4 - الخلية النباتية التي تخلو من البلاستيدات الخضراء لا يمكنها أن:
أ - تطلق الأكسجين
ب - تطلق Co2

د - تنتج ATP - تحصل على الغذاء

السبب:

1 - لا تتم عملية البناء الضوئي التي من نواتجها الأكسجين.
2 - تتم عملية البناء وبالتالي تثبت Co2.
3 - تتم عملية البناء الضوئي وتحويل الطاقة الضوئية إلى طاقة كيميائية.
4 - يستخدم الضوء في تحطيم جزيء Co2 - إطلاق الأكسجين.

س3 - يعد المركب العضوي الأول الناتج من عملية البناء الضوئي:
أ - الغلوكوز
ب - غليسير الدهادي أحادي الفوسفات
ج - الفركتوز

السبب:

1 - يتكون (6) جزيئات من غليسير الدهادي أحادي الفوسفات من حلق كالفين، واحداً منها يخرج من الحلقة ويمكن

المجلد الحادي والعشرون

العدد 22 - مارس 2007
استخدامه في الخلية، وتمر باقي جزيئات غليسر الدهايد أحادي
الفوسفات لبناء ريبيلوز ثنائي الفوسفات.

٢ - يتعدد جزيئي ثاني أكسيد الكربون مع جزء ريبيلوز ثنائي
الفوسفات ليتجز مركب وسطي سداسي الكربون (غير ثابت) يعد
المركب العضوي الأول.

٣ - يتحول المركب غير الثابت لحظيا عند تكونه، فينصهر إلى جزيئين
من حمض غليسرين أحادي الفوسفات، بعد أحدهما المركب
العضوي الأول الناتج من عملية البناء الضوئي.

٤ - تكون السكريات المنتجة فورا من حلقة كالفين الغلوكوز.

س - أي التسلسلات التالية تمثل تدفق الإلكترونات في عملية البناء الضوئي:

\[\text{Co}_2 \leftarrow \text{O}_2 \leftarrow \text{NADPH} \]

أ - حلقة كالفين

ب - NADPH \leftarrow \text{H}_2\text{O}

ج - الكلوروفيل \leftarrow \text{NADPH}

د - النظام الضوئي الأول \leftarrow \text{H}_2\text{O}

النظام الضوئي الثاني

السبب:

١ - عندما يتعرض كلا النظامين إلى الضوء يسري تيار مستمر من
الإلكترونات من النظام الضوئي الأول إلى النظام الضوئي الثاني
وتدوم بالطاقة.

٢ - عندما يتعرض كلا النظامين إلى الضوء يسري تيار مستمر من
NADPH من الماء إلى + NADP الذي يختزل إلى
الذي يستخدم في حلقة كالفين.

٣ - تدفق الإلكترونات المنتشرة من النظام الضوئي الثاني عبر سلسة
نقل الإلكترون إلى النظام الضوئي الأول وتدوم بالطاقة.

٤ - حالة إضاءة النظام الأول تتهيج الإلكترونات، وتعود هذه
الإلكترونات إلى نفس النظام حيث يتم تتحويل إلى
ATP إلى ADP.
س٥ - يتعاون النظام الضوئي الأول والنظام الضوئي الثاني اً

أ - بناء ATP

ب - اختزال NADP+

ج - التفاعلات الضوئية الحلقية

د - أكسدة مركز التفاعل في النظام الضوئي الأول

السبب:

١ - سريان تيار مستمر من الإلكترونات من الناز إلى + NADP

الذي يُستخدم في التفاعلات الضوئية.

٢ - استخدام جزء من الطاقة الضوئية امتصاها الإلكترونات في بناء ATP.

٣ - إنتاج كميات أكبر من جزيئات ATP لاستخدامها في التفاعلات الضوئية.

٤ - تزويج مركز التفاعل في النظام الضوئي الأول بالأكسجين الناتج من تحلل الماء عبر النظام الضوئي الثاني.

س٦ - المرحلة التي يتم فيه إنتاج حقيقي للسكر هي:

أ - التفاعلات الضوئية

ب - حلقة كالفين

ج - تحلل الماء

د - مرحلة النظام الضوئي الأول

السبب:

١ - توفر التفاعلات الضوئية كميات أكبر من ATP التي تستخدم في إنتاج السكر.

٢ - يطلق مركز التفاعل في النظام الضوئي الأول إلكترونات مهيئة بسبب امتصاصها الطاقة الضوئية وينتج من هذه الإلكترونات عند عودتها إلى مركز التفاعل طاقة كافية لإنتاج السكر.
3 - يعد غليسر الدهايد أحادي الفوسفات (PGAL) الناتج النهائي لحلقة كالفن الذي يستخدم في إنتاج السكر.

4 - يسري تيار مستمر من الإلكترونات من الماء إلى +NADP الذي يختزل إلى NADPH اللازم لإنتاج السكر.

5 - ما عدد جزيئات O_2 التي يتم إطلاقها عند تثبيت جزيء واحد من CO_2 في عملية البناء الضوئي؟

 أ - 2 ب - 3 ق - 1 د - 6

السبب:

1 - لتثبيت جزيء واحد من Co_2 يتم تحليل جزيئتين من الماء وإطلاق جزيء من O_2.

2 - لتثبيت جزيء واحد من Co_2 يتم تحليل جزيء واحد من الماء وإطلاق نصف جزيء من O_2.

3 - عند تثبيت جزيء واحد من Co_2 يتم تحليل أربعة جزيئات من الماء وإطلاق جزيء من O_2.

4 - عند تثبيت جزيء واحد من Co_2 يتم تحليل ستة جزيئات من الماء وإطلاق جزيء من O_2.

8 - تتم حلقة كالفن في:
 أ - النهار
 ب - الليل
 ج - د + أ

السبب:

1 - وجود كمية كبيرة من Co_2 توجد في الليل بسبب إغلاق الثغور.

2 - لأنها تتطلب NADPH و ATP التي تنتج فقط في الضوء.

3 - لأنها تحتاج إلى عدة إنزيمات ضرورية لا يتم تنشيطها إلا في الليل.
4- يتم تحليل الماء إلى الأكسجين والهيدروجين في التفاعلات الضوئية التي تعد ضرورية لحلقة كالفن.

5- يوجد في كل النظام الضوئي جزيء كلوروفيل خاص يدعى:
 a- السيتوكلور
 b- مركز التفاعل
 c- ناقل الإلكترونات
 d- فرودكسين

السبب:
1- لأنه الجزء الوحيد القادر على إطلاق إلكترونات مهيج (غنية بالطاقة).

2- لأنه الجزء الوحيد القادر على تحليل الماء إلى هيدروجين والأكسجين.

3- لأنه الجزء الوحيد القادر على بناء ATP.

4- لأنه الجزء الوحيد القادر على تحويل NADPH إلى NADP +.

5- تزود التفاعلات الضوئية حلقة كالفن ب:
 a- الطاقة ATP و CO2
 b- NADPH و H2O
 c- NADPH و ATP

السبب:
1- تزود التفاعلات الضوئية حلقة كالفن بالطاقة اللازمة، و الذي يتم تثبيته في هذه الحلقة.

2- تزود التفاعلات الضوئية حلقة كالفن بمركب اللازم NADPH للحلقة، والماء الذي يتم تحليله إلى أكسجين و هيدروجين.

3- تحدث حلقة كالفن بوجود NADPH و ATP لللازمان لتحويل حمض غليسرين الدهايد أحادي الفوسفات إلى غليسير الدهايد.
أحادي الفوسفات الذي يعد المركب العضوي الأول الناتج في هذه الحلق.

4 - تتم حلقة كالفين بوجود الإلكترونات المهيجة التي ينتجها مركز التفاعل في النظام الضوئي الأول.

5 - تحتوي اللحمة على البلاستيدا الخضراء على:

- جزيئات DNA
- جزيئات RNA
- رابيوسومات
- كل ما سبق

السبب:

6 - البلاستيدا الخضراء قادرة على النمو والتضاعف، وبناء عدد من البروتينات (الأنزيمات) الخاصة بها.

7 - البلاستيدا الخضراء قادرة على تثبيت CO2.

8 - البلاستيدا الخضراء قادرة على إنتاج O2.

9 - البلاستيدا الخضراء قادرة على تحويل NADPH إلى NADP +.

10 - المستقبل النهائي للإلكترونات في التفاعلات الضوئية اللاحقة هو:

- النظام الضوئي الأول
- النظام الضوئي الثاني
- ATP

السبب:

11 - عندما يتعرض النظام الضوئي الأول للضوء يسري تيار من الإلكترونات منه وينتهي بتحويل ATP إلى ADP.

12 - عندما يتعرض النظام الضوئي الثاني للضوء يسري تيار من الإلكترونات منه إلى النظام الضوئي الأول التي يتم تعويضها من الماء.

13 - عندما يتعرض النظام الضوئي الثاني للضوء يسري تيار من الماء.
الإلكترونات منه إلى الماء لتعويض الإلكترونات التي يفقدها عند تحلله.

4 - عندما يتعرض النظام الضوئيان الأول والثاني للضوء يسري تيار من الإلكترونات من الماء إلى NADP+ الذي يختزل إلى NADPH الذي يستخدم في حلقة كالفن.

س 12 - يستخدم ATP و NADPH الناتجان من التفاعلات الضوئية في:

أ - إصلاح النظامين الضوئيين
ب - انتقال الإلكترونات من ناقل إلى آخر عبر سلسلة نقل الإلكترون
ج - تحويل PGAL إلى PGA
د - تشفير Co2

السبب:

١ - في حلقة كالفن يتم اختزال حمض غليسرين أحادي الفوسفات ATP باستخدام الهيدروجين NADPH وجزيء، ليمنتج مركب غليسر الدهايد أحادي الفوسفات (PGA).
٢ - يتحد جزيء من Co2 الجوفي مع جزيء ريبيلوز ثنائي الفوسفات، ليمنتج مركب Wسطيا غير ثابت.
٣ - يتحد جزيئ من غليسر الدهايد أحادي الفوسفات (PGAL) لينتج مركب ريبيلوز ثنائي الفوسفات.
٤ - عندما يفقد النظام الضوئيان الإلكترونات يتم تعميدها من قبل ATP و NADPH

س ١٤ - يحتوي النظام الضوئي على:

أ - أصباغ مساعدة، ومركز التفاعل، وبعض العوامل الناقلة للإلكترونات
ب - ADP، و H+ و p
السبب:

1 - تركز جزيئات الكلوروفيل وبعض الأصباغ المساعدة الطاقة وتنتقل إلي مركز التفاعل الضوئي الذي يطلق إلكترونات مهيجة تنتقل عبر سلسلة نقل الإلكترونات التي تستخلص الطاقة الفائضة من ATP بناء جزيئات.

2 - تركز الأصباغ المساعدة الطاقة وتنتقل إلي مركز التفاعل الذي يقوم ببناء ATP.

3 - يطلق مركز التفاعل إلكترونات مهيجة تختزل إلي NADP+.

4 - يقوم النظام الضوئي ببناء البروتينات (الأنزيمات) اللازمة لحلقة كالفن.