Geomapper: A Visual Basic Software
For Construction And Rendering
Of 3d Solid Geologic Models

Dr. Alaa A. Masoud*

Abstract

Construction and visualization process of the three-dimensional models has been recently advanced underpinned with the rapid advances in computer technology and numerical computation algorithms. These modeling approaches have been proven to be promising in predicting geological, structural, and hydrological settings needed for environmental planning of land-use, hazard mitigation, and sustainable resource management. However, these models require densely distributed data points that are often sparse and scarce. The present work introduces prototype 3D geologic modeling tools developed to assist in constructing 3D models from traditional geologic maps stored as GIS layers taking information depicted on these maps or from drilled-well charts as a source for data. The process-oriented algorithm integrates a successive sequence of geologic events and a logical model. The logical model describes the inter-relationships between the geologic units and their defining boundaries and the 3D surface data represented by the topography. The tools implemented can produce and visualize models ranging from simple layered sedimentation/erosion to complexly faulted geologic units, based on scattered data (e.g. surfaces, 3D grids, and the geologic entity/boundary hierarchy). The tools were encoded into a Visual Basic (VB) program with Arabic and English graphical user interfaces (GUI) to enhance its interoperability and to effectively establish a geoinformation knowledge base in institutional/educational courses in areas where Arabic is the native language. The implemented functions allow estimating the continuous surface boundaries using optimal approximation techniques, importing data from other GIS packages like GRASS GIS and ARC GIS, logical
model building, interactive setting of the perspective view, contouring, and outputting the results to bitmap image format. Outputs include 2D and 3D perspective geologic views, user-defined cross-sections, structure contours, and continuous dip surfaces. Mathematical formulae used for the implemented tools are described. The software was successfully tested and proved promising using simulated fault and landslide data as well as terrain data from the landscape surrounding Riyadh City in the Kingdom of Saudi Arabia.

1. Introduction

Efficient representation and interaction with three-dimensional (3D) geological models is a topic of high interest for a range of environmental, hazard and natural resource exploration studies (e.g. hydrocarbon, groundwater, geothermal energy, and mineral resources). Data availability, structure, and representation techniques are crucial for the model usability. Pure statistical techniques are of common use for building very sophisticated 3D geologic models in areas where extensive drilling and 3D geophysical mapping provide a wealth of data. These techniques ignore constraints derived from geological knowledge when building model geometries. In many cases, poor outcrops, expensive subsurface data acquisition, and geological complexity, typically impose constraints on the number and type of field data that can be recorded in practice. Boundary representation (B-rep) and in particular the Triangular Irregular Networks (TINs) data structure has been extensively used for the 3D solid geologic modeling (Bak and Mill, 1989; Lemon and Jones, 2003; Wu et al., 2005). However, for further analysis and integration of the model products in geographic information system environments, TINs have a very limited use. Therefore, we propose the regular grid structure approach as an efficient alternative. The approach incorporates data scarcity and the gridded boundary structure that maintain the logical geologic objects’ relationships in 3D geologic modeling practices.

In the present work, as an initial effort, we are developing an interactive graphical modeling environment that could facilitate the construction and rendering of real world 3D geologic models from the
scarce observation data available on geologic maps or gathered during field surveys or from boreholes. The modeling mathematical background, implemented features, and examples of fault and landslide 3D solid models are introduced in the following sections.

2. Three-dimensional solid modeling approach:

A geologic model, in the developed methodology, is defined as a set of 3D spatial geologic entities represented by their B-rep gridded interfaces (depositional, erosional, structural, unconformities, and other boundaries) and logical rules that govern their behavior in a geo-referenced system. Boundary surfaces defining various geologic entities can be optimally approximated through integrating location (x, y, z) and orientation data (dip and strike). The orientation data, either noted on geologic maps or collected from drill holes, can be used to define the geometry of the entities at depth. Once all boundary surfaces have been defined in this way, they are assembled into a 3D volume structure according to "logical rules" that specify the underlying and overlying relationships of different geologic entities relative to boundary surfaces. A geologic function can be then defined uniquely to assign a geologic entity to every point in the 3D space and the spatial 3D distribution of entities can be visualized on an objective surface. Properties are then assigned to different entities. A key to the intelligible and complete computer representation of the geological knowledge, therefore, is the careful representation of the geologic boundaries and their relationships to the different entities.

2.1. Boundary representation (B-rep):

There are several computational algorithms designed to fit a surface to position and orientation data; many are unsuitable for our purpose since they typically require all of the relevant data to be on the surface being fitted; we have noticed that some of our data - which we must take into account - may be above or below the geology contact surface that we want to generate. Furthermore, most available tools
for representing complex geologic surfaces and volumes are not designed for producing optimal grids for analysis and rendering. Even with a complete understanding of stratigraphy, material properties, boundary conditions, the task of incorporating data into a numerical model can be difficult and time consuming. Shiono et al. 1987 has developed a constrained approximation technique for automating finite element optimal grid generation that maintains the geometric integrity of geologic structure and stratigraphy. The approximation method produces boundaries that respect simultaneously the scattered elevation or depth information defining the geological boundary position as well as strike and dip data that guide the subsurface orientation of the geological surface. A plenty of such kind of data are already depicted on geologic maps, cross-sections, or collected during field surveys or from drill-holes. The algorithm iteratively minimizes the least square root error until an optimal approximation of the sampled observations is reached. More on the mathematical basis behind this approach can be found in Masoud, 2008.

The constrained optimization method (Shiono et al., 1987) fits a smooth surface honoring all of the observation data for building the boundaries. Three sorts of field data can be used: equality data (when the relative position of the geologic boundary coincides with the sample data), inequality data (when the relative position of the geologic boundary is above or below sample data), and inclination data (strike and dip of boundary and bedding parallel to boundary). Data determining each boundary surface \(f(x, y)\) are given in the following format:

\[
\text{location } (x_k, y_k, z_k), \text{ index } I_k, \text{ strike } \xi_k, \text{ dip } \eta_k \ (k = 1, \ldots, N),
\]

where \(I_k\) is an index of the spatial relationship between the outcrop \((x_k, y_k, z_k)\) and the surface \(f(x, y)\). The variable \(I_k = -1, 0, \text{ or } +1\) when the \(k\)th outcrop is below, exactly on, or above the surface, respectively. These data provide constraints that the surface \(f(x, y)\) should satisfy as follows:
Geomapper: A Visual Basic Software For Construction

\[f(x_k, y_k) > z_k (I_k = -1), f(x_k, y_k) = z_k (I_k = 0), f(x_k, y_k) < z_k (I_k = +1), \]
\[f_x(x_k, y_k) = -\cos \xi_k \tan \eta_k, \quad f_y(x_k, y_k) = \sin \xi_k \tan \eta_k. \]

The residual sum of squares can be evaluated by \(\Phi_H (f) \) and \(\Phi_D (f) \) as follows:
\[
\Phi_H (f) = \sum [f(x_k, y_k) - z_k]^2 \quad (\text{sum for } I_k = 0) \\
+ \sum [\min \{0, f(x_k, y_k) - z_k\}]^2 \quad (\text{sum for } I_k = -1) \\
+ \sum [\max \{0, f(x_k, y_k) - z_k\}]^2 \quad (\text{sum for } I_k = +1), \quad (2.1)
\]
\[
\Phi_D (f) = \sum \left[f_x^2 (x_k, y_k) + \cos \xi_k \tan \eta_k \right]^2 + f_y^2 (x_k, y_k) - \sin \xi_k \tan \eta_k \right]^2. \quad (2.2)
\]

The smoothness can be evaluated by
\[
J(f) = m_1 \int [f_{xx^2} + f_{y^2}] \, dx \, dy + m_2 \int [(f_{xx})^2 + 2(f_{xy})^2 + (f_{yy})^2] \, dx \, dy \quad (2.3)
\]

The smoothest surface should minimize:
\[
\Omega(f; \alpha) = J(f) + \alpha \Phi_H (f) + \gamma \Phi_D (f), \quad (2.4)
\]

where \(\alpha \) and \(\gamma \) are constants to control the relative weights of \(\Phi_H (f) \) and \(\Phi_D (f) \), respectively.

When we approximate \(f(x, y) \) by discrete values \(f = (f_{1_1}, \ldots, f_{nm}) \) on an \(n \times m \) grid, the smoothness \(J(f) \) is evaluated in a quadratic form of \(f \). Then we can obtain the optimal solution \(f^* \) through successive approximation of \(f^{(k)} \), which minimizes \(\Omega(f; \alpha_k) \) from the increasing sequence \(\{\alpha_k \mid \alpha_1 < \alpha_2 < \ldots < \alpha_k\} \).

Equality and inequality data are automatically selected because the variable \(I_k \) can be assigned using the logical rules describing relations between geologic entities and boundaries. Furthermore, inclination data can be selected using the parallelism data in the input, as previously described. Therefore, all boundary surfaces \(S_1, S_2, \ldots, S_{m-1} \) can be automatically determined.

2.2. Logical modeling:

In nature, the earth’s topographic surface is a boundary between the atmosphere/hydrosphere open space \((a) \) and the lower 3D geologic space consisting of various geologic entities separated by discontinuity boundary surfaces. Since topographic surface is well defined by the
digital elevation models, thus defining that any point \(f(x, y) \) to belong to the open space or to the geologic space can be easily judged. Based on this, the function \(f(x, y) \) that assigns every point in the 3D geologic space a geologic entity can be defined uniquely once the boundary surfaces constituting various entities are well defined. This can be set by a logical model that establishes hierarchical relationships assigning (+), (-), or (*), for entities located in direct contact above, below, or unrelated to their boundary surfaces, respectively. Examples of various geologic settings and their corresponding logical models are described in the following sections.

2.3. Construction of 3D geologic models:

When a boundary surface \((S_{\text{event}}) \) defined by \(z = s \ (x, y) \) resulting from discontinuity geologic event like sedimentation \((s) \), erosion \((e) \), faulting \((f) \), divides its surrounding geologic space \((G) \) into upper \(S_{\text{event}}^+ \) and lower \(S_{\text{event}}^- \) subspaces, then we will have the following relationship:

\[
S_{\text{event}}^- \sim S_{\text{event}}^+ = G
\]

(2.5)

where and can be given by:

\[
S_{\text{event}}^- = \{(x, y, z) \mid z < s(x, y)\}, \text{ and } S_{\text{event}}^+ = \{(x, y, z) \mid z > s(x, y)\}
\]

(2.6)

The subscript \(\text{event} \) refers to any geologic event and can be substituted by \(e \) (erosion), \(s \) (sedimentation), \(f \) (faulting), etc. Therefore, any geologic entity can be easily defined by intersecting the 3D subspaces confined to two successive boundary surfaces. Once entities are defined by the corresponding confining boundaries, their solid models can be constructed. This process or event-based formulation is true and applicable for any single or complex geologic events (Fig. 1).
Fig. 1: Concept of event-based definition of geologic entities and surface boundaries (a) Initial state where the space Ω is divided into open (O) and geologic (G) spaces by a topographic surface (S_t), (b) Erosion, (c) Sedimentation, (d) Erosion followed by sedimentation, (e) Sedimentation followed by erosion, and (f) Faulting.

3. **Geomapper implementation:**

 A set of software tools named GEOMAPPER was developed for modeling boundary surfaces, building logical models, construction of the 3D solid geologic models, and for visualization. In order to take its full advantage of graphical interaction and editing techniques, Visual Basic Graphic user-interface (GUI) under Microsoft Windows environment was appraised to design the software. This was also
implemented for its wide use and the user-friendly interface that could play a crucial role in the overall usability of the tools and improves the user’s productivity. A task-oriented main four panels are developed including model input, data setting, view setup, and output that can support an interactive environment for numeric computation, three-dimensional modeling and visualization.

Input data includes topographic surface, geologic boundaries, and logical models (Fig. 2). Topographic data are either DEMs imported from the commonly used formats such as ARC and GRASS GIS ascii data or generated together with geologic boundaries from scattered irregularly-spaced location and orientation data picked up from maps or from field surveys using GEOSURFER (Masoud, 2008). The tools enable the user to read logical models from text files, to set simple two layer structure model, or interactively setup new complex logical models based on the geologic history of events like deposition/erosion, faulting, landsliding, or any alternated combinations of these events. Boundary surfaces are read from grid files if irregular or can be set interactively for regular planes representing simple bedding and faulting planes. Simple regular dipping planes can be set using a point of exposure (x, y, z) and the heading/angle of dip.

Fig. 2: Data input panel in English (left) and in Arabic (right) GUI.

The data setting panel allows the user to set the 3D model topography, the colors for different geologic entities, the base height,
and the cross-section geometry (Fig. 3). Cross-sections can be created as source start point coordinates and the end point is defined either as coordinates or bearings (0 to ±90) from the source. The coordinates of the start and end points are set from the input data displayed on the panel.

Fig. 3: Data setting panel in English (left) and in Arabic (right) GUI.

The multi-dimensional visualization of geologic models is essential for the models’ efficient interpretation. The visualization process provides a feedback to the model reliability and allows real time monitoring of modifications caused by the different modeling tools which give the user a much more accurate insight of the model than a regular computer screen. The view setup panel in GEOMAPPER provides interactive capabilities to rotate and scale the 2D/3D model, display contours with user-specified start, end, and interval values, set the background colors and the model frames as well as the legend.

The output from the modeling tools are 2D/3D views of the geologic models and cross-sections that can be saved either to bitmap images or to the windows clipboard to be edited and retouched in different graphics software packages. Parameters of the drawn
geologic map and the cross-section are displayed on the panel to be used as a reference for later use.

4. Examples for 3D solid geologic models:

In order to clarify the applicability of the developed tools, examples for faulted and landslide structures are shown. For the sake of clarity, simple boundary surfaces are represented and combined to build the solid models. However, projecting various complex non-layered geologic entities with irregular boundaries is also possible once their grid boundaries and logical models are properly built.

4.1. Faulted geologic terrain:

In this example, a single fault could be satisfactory to construct a 3D geologic model where one or more data points define the location of the fault, and one or more orientation data define its attitude; then the fault surface can be constructed from these data. The fault surface divides the geologic space into two subspaces; hanging wall (hw) and foot wall (fw). Geologic entities and boundaries can be defined in reference to these walls (Fig. 4). In addition to the DEM data, boundary surfaces with information shown in table 1 are used to build the model shown in figure 4. The geologic model is shown in table 2.

Table 1
Location and orientation information for boundary surfaces of the faulted geologic terrain model shown in figure 4

<table>
<thead>
<tr>
<th>Boundary Surfaces</th>
<th>Dip Azimuth</th>
<th>Dip Angle</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1fw</td>
<td>90</td>
<td>15</td>
<td>6700</td>
<td>3200</td>
<td>1260</td>
</tr>
<tr>
<td>S2fw</td>
<td>90</td>
<td>15</td>
<td>8080</td>
<td>3800</td>
<td>1600</td>
</tr>
<tr>
<td>S1hw</td>
<td>90</td>
<td>15</td>
<td>2100</td>
<td>7900</td>
<td>1500</td>
</tr>
<tr>
<td>S2hw</td>
<td>90</td>
<td>15</td>
<td>5400</td>
<td>2900</td>
<td>1400</td>
</tr>
<tr>
<td>Fault</td>
<td>270</td>
<td>65</td>
<td>6060</td>
<td>3000</td>
<td>1050</td>
</tr>
</tbody>
</table>
Table 2
Logical model of the faulted geologic terrain with entities and surface boundaries defined in figure 4

<table>
<thead>
<tr>
<th>Surface → Entity</th>
<th>S1 fw</th>
<th>S2 fw</th>
<th>S1 hw</th>
<th>S2 hw</th>
<th>Fault</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 fw</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>E2 fw</td>
<td>+1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>E3 fw</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>E1 hw</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>E2 hw</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>E3 hw</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>α</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>

Fig. 4: 3D model of an example of a faulted geologic terrain (below) and a cross-section along the line A-B (Above)
4.2. Landslide model:

Grid boundary surfaces represented by DEM, S1, S2, S3, and S4 are used to build the landslide model shown in figure 5. S1 is the boundary surface of open space and filled space during the initial state. S2 is the erosion surface after sedimentation of E2. S3 is the slip surface, and S4 is the landform of the slumped blocks E3 and E4. Geologic entities E1, E2, E3, and E4 are defined from the inter-relationship between different boundary surfaces as shown on the logical model. From the logical model when compared to the schematic cross-section in figure 5, the entity E1 is located below S1, S2, and S3 and has no relationship to S4. E2 is located above S1, below S2 and S3, and has no direct contact to S4. E3 is related neither to S1 nor to S3, and lies above S2 and below S4. E4 is not related to S1 or to S2, and lies above S3 and below S4. The open space á which resulted from slipping has no relationship to S1 and S2 and lies above S3 and S4. The original open space á has no relationship to S1 and S3 and lies above S2 and S4. From these components, the solid geologic model of the landslide is drawn (Fig. 5).
5- CONCLUSIONS:

GEOMAPPER software is developed and designed to provide a set of tools throughout all aspects of the 3D solid geologic modeling and visualization process. Tools for 3D solid modeling included the optimal approximation for modeling boundary surfaces (topographic and geologic), building logical models, and the construction of the 3D solid geologic models. 3-D solid geologic models are created by the logical integration of the boundary representations of the geologic entities. Each B-rep is created from elevation or depth information as
well as strike and dip data depicted on geologic maps or gathered during field surveys and boreholes. Once the boundaries are built a logical model is proposed based on the stratigraphic setting and the history of geologic events to describe and maintain the hierarchical inter-relationships of entities. The software produces flexible 3D models that permit interactive refinement where complexity of boundary surfaces and entities can be easily implemented with updated interaction with the logical rules. Once the model is generated it may be viewed from any angle and level of magnification. Perspective views as well as cross-sections at any point with various heading and tilt angles can be easily portrayed. The major drawback of the developed package is that discretization of the grid boundary surfaces is a memory-intensive process and hence the computer specifications govern the speed for realizing and rendering large 3D models. The construction methodology presented here can be of particular interest for mineral and hydrocarbon exploration, where orientation data are commonly available. The software is particularly useful for Arabic speaking countries as it is designed in Arabic and English interface. The software package, help files, and the example data are available upon request from the author’s website at http://faculty.ksu.edu.sa/Dr.Alaa.Masoud/Pages/DevelopedSoftware.aspx.

Acknowledgements:

The author acknowledges the contribution of Mr. Taro UEKA-KU, Prof. Dr. Shinji MASUMOTO, and Prof. Dr. Kyoji SHIONO, at the Department of Geosciences, Faculty of Science, Osaka City University, Japan, for the fruitful discussions without which this work would not have been completed. Load of thanks also goes to Dr. Masanori SAKAMOTO at Laboratory of Natural Science, Kokugakuin University, Japan, who helped in developing the early graphical user interfaces.
REFERENCES